Register Account


Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Bimonoidal Categories, 𝐸 {𝑛}-Monoidal Categories, and Algebraic 𝐾-Theory, Volum...
#1
Heart 
[Image: 32149f93b54b17f9ab6d5323031d5cec.webp]
Free Download Bimonoidal Categories, 𝐸_{𝑛}-Monoidal Categories, and Algebraic 𝐾-Theory, Volume III: From Categories to Structured Ring Spectra
Niles Johnson, Donald Yau
English | 2024 | ISBN: 1470478110 | 633 Pages | PDF | 15.4 MB

Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. The three books published by the AMS in the Mathematical Surveys and Monographs series under the title Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory (Volume I: Symmetric Bimonoidal Categories and Monoidal Bicategories, Volume II: Braided Bimonoidal Categories with Applications, and Volume III: From Categories to Structured Ring Spectra-this book) provide a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user-friendly resource for beginners and experts alike. Part 1 of this book is a detailed study of enriched monoidal categories, pointed diagram categories, and enriched multicategories. Using this machinery, Part 2 discusses the rich interconnection between the higher ring-like categories, homotopy theory, and algebraic $K$-theory. Starting with a chapter on homotopy theory background, the first half of Part 2 constructs the Segal $K$-theory functor and the Elmendorf-Mandell $K$-theory multifunctor from permutative categories to symmetric spectra. For the latter, the detailed treatment here includes identification and correction of some subtle errors concerning its extended domain. The second half applies the $K$-theory multifunctor to small ring, bipermutative, braided ring, and $E_n$-monoidal categories to obtain, respectively, strict ring, $E_{\infty}$-, $E_2$-, and $E_n$-symmetric spectra.

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live

[To see links please register or login]

Links are Interchangeable - Single Extraction
[Image: signature.png]
Reply


Download Now



Forum Jump:


Users browsing this thread:
1 Guest(s)

Download Now