Register Account


Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Python For Numpy For Absolute Beginners 2023
#1
[Image: 25a3332a21e67ecaa49c21a26a87e1f8.jpg]
Python For Numpy For Absolute Beginners 2023
Published 5/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.10 GB | Duration: 1h 42m

Learn Complete NumPy from Basic to Advance topic like Indexing, Slicing, Broadcasting, Joining, Splitting, Searching .

[b]What you'll learn[/b]

Understanding NumPy Library from zero to advanced

Why We Use NumPy Array Over Python List

Implementing array operations using NumPy module in python

How to work in High dimension Datasets with NumPy array

[b]Requirements[/b]

Basic syntax of Python

[b]Description[/b]

NumPy (short for "Numerical Python") is a Python library used for scientific computing and data analysis. It provides a powerful set of tools for working with arrays and matrices of numerical data. NumPy is particularly useful for numerical calculations involving large amounts of data, as it is designed to be efficient and fast.One of the main features of NumPy is its ability to handle multi-dimensional arrays of data. These arrays can be used to represent vectors, matrices, or any other kind of numerical data. NumPy provides a large number of built-in functions for performing operations on these arrays, such as mathematical functions (like sin, cos, and exp), statistical functions (like mean and variance), and linear algebra functions (like matrix multiplication and eigendecomposition).NumPy also provides a number of tools for working with structured data, such as CSV files or other tabular data. These tools allow you to easily import and manipulate data, and to perform complex calculations and analyses on it.In addition to its core functionality, NumPy is often used as a foundation for other Python libraries that are used in scientific computing and data analysis, such as Pandas and SciPy. This makes NumPy an essential tool for anyone working in these fields.Overall, NumPy is a powerful and versatile library that is an essential tool for anyone working in scientific computing, data analysis, or related fields.This course introduce with all majority of concept of NumPy - numerical python library.You will learn following topics :1) Creating Arrays using NumPy in Python2) Accessing Arrays using NumPy in Python3) Finding Dimension of the Array using NumPy in Python4)Finding the Shape of the Array using NumPy5) Checking Datatype of an Array using NumPy in Python6) Changing Datatype of an Array using NumPy in Python7) Reshaping of an arrays using NumPy in Python8) Iterating through arrays using NumPy in Python9) Indexing on (1D, 2D, 3D) Arrays using NumPy in Python10) Slicing an (1D, 2D, 3D) Array using NumPy in Python11) Operation (Scalar , Relational , Vector ) of NumPy Array12) Joining Arrays using NumPy in Python13) Splitting Array using NumPy in Python14) Sorting an Array using NumPy in Python15) Searching in Array using NumPy in Python16) Filtering an Array using NumPy in Python17) Generating a Random Array using NumPy in Python18) Dot Product of NumPy Array19) Converting N D to 1 D NumPy Array20) Plotting Graphs

Overview

Section 1: Introduction

Lecture 1 Introduction of Numpy

Lecture 2 Why we Use Numpy Over Python List ?

Lecture 3 Applications of Numpy

Lecture 4 Installation of Anaconda

Section 2: How to Create Numpy Array

Lecture 5 Create 1D, 2D, 3D Numpy array

Lecture 6 Create numpy array with custom data type

Lecture 7 Create numpy array with arange function

Lecture 8 Reshape the numpy array

Lecture 9 Create Zeros, Ones , Random array

Lecture 10 Create array Using linspace

Section 3: Numpy Array Attributes

Lecture 11 Find the dimension of array

Lecture 12 Find the Shape and Size of the array

Lecture 13 Find the Itemsize of the array

Lecture 14 Find the datatype and change the datatype of an array

Section 4: Numpy Array Operation

Lecture 15 Scalar Operation of numpy array

Lecture 16 Relational Operation of numpy array

Lecture 17 Vector Operation of numpy array

Section 5: Numpy Array Function

Lecture 18 Understanding the Axis and Sum , Min, Max

Lecture 19 Finding Mean , Median , Variance of Numpy Array

Lecture 20 Dot product of an Numpy array

Lecture 21 Finding Log and exponent of an array

Lecture 22 Understanding round , floor ,ceil in numpy

Section 6: Indexing and Slicing in Numpy array

Lecture 23 What is the Indexing and Slicing

Lecture 24 Indexing on 2D array and 3D numpy array

Lecture 25 Slicing in 1D and 2D Numpy array

Lecture 26 Slicing in 3D Numpy array

Section 7: Iteration of Numpy Array

Lecture 27 Iterating 1D array

Lecture 28 Iterating 2D array

Lecture 29 Iterating 3D array

Section 8: Reshaping of Numpy Array

Lecture 30 Reshaping of numpy array

Lecture 31 Transpose the numpy array

Lecture 32 Converting N D array to 1 D array using ravel

Section 9: Joining Two Array

Lecture 33 How to Join to array

Lecture 34 Code for Joining two array using stacking

Section 10: Splitting Two Array

Lecture 35 Splitting an array

Lecture 36 Code for Splitting an array

Section 11: Advance Level

Lecture 37 Searching in Numpy Array

Lecture 38 Sorting a Numpy Array

Engineering Students, Software Developers And Aspiring Data Scientists,Beginner in Python, Who wants to learn Pandas Library

[Image: d0lf9HFZ_o.jpg]

[To see links please register or login]

[To see links please register or login]

[To see links please register or login]

[Image: signature.png]
Reply



Forum Jump:


Users browsing this thread:

Download Now   Download Now
Download Now   Download Now