![]() |
Python Mastery For Data, Statistics & Statistical Modeling - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Python Mastery For Data, Statistics & Statistical Modeling (/Thread-Python-Mastery-For-Data-Statistics-Statistical-Modeling) |
Python Mastery For Data, Statistics & Statistical Modeling - BaDshaH - 11-23-2023 ![]() Published 11/2023 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 7.04 GB | Duration: 28h 7m Python Mastery for Data Science & Statistical Modeling: Basics to Advanced Applications in Data Analysis, Visualization [b]What you'll learn[/b] Solid grasp of Python programming for Data Science & Statistics Practical experience through hands-on projects and case studies Ability to apply Statistical Modeling techniques using Python Understanding of real-world applications in Data Analysis and Machine Learning [b]Requirements[/b] No prior knowledge or experience is required. Everything is explained from absolute basics. [b]Description[/b] Unlock the world of data science and statistical modeling with our comprehensive course, Python for Data Science & Statistical Modeling. Whether you're a novice or looking to enhance your skills, this course provides a structured pathway to mastering Python for data science and delving into the fascinating world of statistical modeling.Module 1: Python Fundamentals for Data ScienceDive into the foundations of Python for data science, where you'll learn the essentials that form the basis of your data journey.Session 1: Introduction to Python & Data ScienceSession 2: Python Syntax & Control FlowSession 3: Data Structures in PythonSession 4: Introduction to Numpy & Pandas for Data ManipulationModule 2: Data Science Essentials with PythonExplore the core components of data science using Python, including exploratory data analysis, visualization, and machine learning.Session 5: Exploratory Data Analysis with Pandas & NumpySession 6: Data Visualization with Matplotlib, Seaborn & BokehSession 7: Introduction to Scikit-Learn for Machine Learning in PythonModule 3: Mastering Probability, Statistics & Machine LearningGain in-depth knowledge of probability, statistics, and their seamless integration with Python's powerful machine learning capabilities.Session 8: Difference between Probability and StatisticsSession 9: Set Theory and Probability ModelsSession 10: Random Variables and DistributionsSession 11: Expectation, Variance, and MomentsModule 4: Practical Statistical Modeling with PythonApply your understanding of probability and statistics to build statistical models and explore their real-world applications.Session 12: Probability and Statistical Modeling in PythonSession 13: Estimation Techniques & Maximum Likelihood EstimateSession 14: Logistic Regression and KL-DivergenceSession 15: Connecting Probability, Statistics & Machine Learning in PythonModule 5: Statistical Modeling Made EasySimplify statistical modeling with Python, covering summary statistics, hypothesis testing, correlation, and more.Session 16: Overview of Summary Statistics in PythonSession 17: Introduction to Hypothesis TestingSession 18: Null and Alternate Hypothesis with PythonSession 19: Correlation and Covariance in PythonModule 6: Implementing Statistical ModelsDelve deeper into implementing statistical models with Python, including linear regression, multiple regression, and custom models.Session 20: Linear Regression and CoefficientsSession 21: Testing for Correlation in PythonSession 22: Multiple Regression and F-TestSession 23: Building Custom Statistical Models with Python AlgorithmsModule 7: Capstone Projects & Real-World ApplicationsPut your skills to the test with hands-on projects, case studies, and real-world applications.Session 24: Mini-projects integrating Python, Data Science & StatisticsSession 25: Case Study 1: Real-world applications of Statistical ModelsSession 26: Case Study 2: Python-based Data Analysis & VisualizationModule 8: Conclusion & Next StepsWrap up your journey with a recap of key concepts and guidance on advancing your data science career.Session 27: Recap & Summary of Key ConceptsSession 28: Continuing Your Learning Path in Data Science & PythonJoin us on this transformative learning adventure, where you'll gain the skills and knowledge to excel in data science, statistical modeling, and Python. Enroll now and embark on your path to data-driven success!Who Should Take This Course?Aspiring Data ScientistsData AnalystsBusiness AnalystsStudents pursuing a career in data-related fieldsAnyone interested in harnessing Python for data insightsWhy This Course?In today's data-driven world, proficiency in Python and statistical modeling is a highly sought-after skillset. This course empowers you with the knowledge and practical experience needed to excel in data analysis, visualization, and modeling using Python. Whether you're aiming to kickstart your career, enhance your current role, or simply explore the world of data, this course provides the foundation you need. What You Will Learn:This course is structured to take you from Python fundamentals to advanced statistical modeling, equipping you with the skills to:Master Python syntax and data structures for effective data manipulationExplore exploratory data analysis techniques using Pandas and NumpyCreate compelling data visualizations using Matplotlib, Seaborn, and BokehDive into Scikit-Learn for machine learning in PythonUnderstand key concepts in probability and statisticsApply statistical modeling techniques in real-world scenariosBuild custom statistical models using Python algorithmsPerform hypothesis testing and correlation analysisImplement linear and multiple regression modelsWork on hands-on projects and real-world case studiesKeywords ![]() Overview Section 1: Python for Data Science and Data Analysis Lecture 1 Link to the Python codes for the projects and the data Lecture 2 Introduction: About the Tutor and AI Sciences Lecture 3 Introduction: Introduction To Instructor Lecture 4 Introduction: Focus of the Course-Part 1 Lecture 5 Introduction: Focus of the Course- Part 2 Lecture 6 Basics of Programming: Understanding the Algorithm Lecture 7 Basics of Programming: FlowCharts and Pseudocodes Lecture 8 Basics of Programming: Example of Algorithms- Making Tea Problem Lecture 9 Basics of Programming: Example of Algorithms-Searching Minimun Lecture 10 Basics of Programming: Example of Algorithms-Searching Minimun Quiz Lecture 11 Basics of Programming: Example of Algorithms-Sorting Problem Lecture 12 Basics of Programming: Example of Algorithms-Searching Minimun Solution Lecture 13 Basics of Programming: Sorting Problem in Python Lecture 14 Why Python and Jupyter Notebook: Why Python Lecture 15 Why Python and Jupyter Notebook: Why Jupyter Notebooks Lecture 16 Installation of Anaconda and IPython Shell: Installing Python and Jupyter Anaconda Lecture 17 Installation of Anaconda and IPython Shell: Your First Python Code- Hello World Lecture 18 Installation of Anaconda and IPython Shell: Coding in IPython Shell Lecture 19 Variable and Operator: Variables Lecture 20 Variable and Operator: Operators Lecture 21 Variable and Operator: Variable Name Quiz Lecture 22 Variable and Operator: Bool Data Type in Python Lecture 23 Variable and Operator: Comparison in Python Lecture 24 Variable and Operator: Combining Comparisons in Python Lecture 25 Variable and Operator: Combining Comparisons Quiz Lecture 26 Python Useful function: Python Function- Round Lecture 27 Python Useful function: Python Function- Round Quiz Lecture 28 Python Useful function: Python Function- Round Solution Lecture 29 Python Useful function: Python Function- Divmod Lecture 30 Python Useful function: Python Function- Is instance and PowFunctions Lecture 31 Python Useful function: Python Function- Input Lecture 32 Control Flow in Python: If Python Condition Lecture 33 Control Flow in Python: if Elif Else Python Conditions Lecture 34 Control Flow in Python: if Elif Else Python Conditions Quiz Lecture 35 Control Flow in Python: if Elif Else Python Conditions Solution Lecture 36 Control Flow in Python: More on if Elif Else Python Conditions Lecture 37 Control Flow in Python: More on if Elif Else Python Conditions Quiz Lecture 38 Control Flow in Python: More on if Elif Else Python Conditions Solution Lecture 39 Control Flow in Python: Indentations Lecture 40 Control Flow in Python: Indentations Quiz Lecture 41 Control Flow in Python: Indentations Solution Lecture 42 Control Flow in Python: Comments and Problem Solving Practice With If Lecture 43 Control Flow in Python: While Loop Lecture 44 Control Flow in Python: While Loop break Continue Lecture 45 Control Flow in Python: While Loop break Continue Quiz Lecture 46 Control Flow in Python: While Loop break Continue Solution Lecture 47 Control Flow in Python: For Loop Lecture 48 Control Flow in Python: For Loop Quiz Lecture 49 Control Flow in Python: For Loop Solution Lecture 50 Control Flow in Python: Else In For Loop Lecture 51 Control Flow in Python: Loops Practice-Sorting Problem Lecture 52 Function and Module in Python: Functions in Python Lecture 53 Function and Module in Python: DocString Lecture 54 Function and Module in Python: Input Arguments Lecture 55 Function and Module in Python: Multiple Input Arguments Lecture 56 Function and Module in Python: Multiple Input Arguments Quiz Lecture 57 Function and Module in Python: Multiple Input Arguments Solution Lecture 58 Function and Module in Python: Ordering Multiple Input Arguments Lecture 59 Function and Module in Python: Output Arguments and Return Statement Lecture 60 Function and Module in Python: Function Practice-Output Arguments and Return Statement Lecture 61 Function and Module in Python: Variable Number of Input Arguments Lecture 62 Function and Module in Python: Variable Number of Input Arguments Quiz Lecture 63 Function and Module in Python: Variable Number of Input Arguments Solution Lecture 64 Function and Module in Python: Variable Number of Input Arguments as Dictionary Lecture 65 Function and Module in Python: Variable Number of Input Arguments as Dictionary Quiz Lecture 66 Function and Module in Python: Variable Number of Input Arguments as Dictionary Solution Lecture 67 Function and Module in Python: Default Values in Python Lecture 68 Function and Module in Python: Modules in Python Lecture 69 Function and Module in Python: Making Modules in Python Lecture 70 Function and Module in Python: Function Practice-Sorting List in Python Lecture 71 String in Python: Strings Lecture 72 String in Python: Multi Line Strings Lecture 73 String in Python: Indexing Strings Lecture 74 String in Python: Indexing Strings Quiz Lecture 75 String in Python: Indexing Strings Solution Lecture 76 String in Python: String Methods Lecture 77 String in Python: String Methods Quiz Lecture 78 String in Python: String Methods Solution Lecture 79 String in Python: String Escape Sequences Lecture 80 String in Python: String Escape Sequences Quiz Lecture 81 String in Python: String Escape Sequences Solution Lecture 82 Data Structure: Introduction to Data Structure Lecture 83 Data Structure: Defining and Indexing Lecture 84 Data Structure: Insertion and Deletion Lecture 85 Data Structure: Insertion and Deletion Quiz Lecture 86 Data Structure: Insertion and Deletion Solution Lecture 87 Data Structure: Python Practice-Insertion and Deletion Lecture 88 Data Structure: Python Practice-Insertion and Deletion Quiz Lecture 89 Data Structure: Python Practice-Insertion and Deletion Solution Lecture 90 Data Structure: Deep Copy or Reference Slicing Lecture 91 Data Structure: Deep Copy or Reference Slicing Quiz Lecture 92 Data Structure: Deep Copy or Reference Slicing Solution Lecture 93 Data Structure: Exploring Methods Using TAB Completion Lecture 94 Data Structure: Data Structure Abstract Ways Lecture 95 Data Structure: Data Structure Practice Lecture 96 Data Structure: Data Structure Practice Quiz Lecture 97 Data Structure: Data Structure Practice Solution Section 2: Mastering Probability & Statistic Python (Theory & Projects) Lecture 98 Link to the Python codes for the projects and the data Lecture 99 Introduction: Introduction to Instructor and AISciences Lecture 100 Introduction: Introduction To Instructor Lecture 101 Introduction: Focus of the Course Lecture 102 Probability vs Statistics: Probability vs Statistics Lecture 103 Sets: Definition of Set Lecture 104 Sets: Cardinality of a Set Lecture 105 Sets: Subsets PowerSet UniversalSet Lecture 106 Sets: Python Practice Subsets Lecture 107 Sets: PowerSets Solution Lecture 108 Sets: Operations Lecture 109 Sets: Operations Exercise 01 Lecture 110 Sets: Operations Solution 01 Lecture 111 Sets: Operations Exercise 02 Lecture 112 Sets: Operations Solution 02 Lecture 113 Sets: Operations Exercise 03 Lecture 114 Sets: Operations Solution 03 Lecture 115 Sets: Python Practice Operations Lecture 116 Sets: VennDiagrams Operations Lecture 117 Sets: Homework Lecture 118 Experiment: Random Experiment Lecture 119 Experiment: Outcome and Sample Space Lecture 120 Experiment: Outcome and Sample Space Exercise 01 Lecture 121 Experiment: Outcome and Sample Space Solution 01 Lecture 122 Experiment: Event Lecture 123 Experiment: Event Exercise 01 Lecture 124 Experiment: Event Solution 01 Lecture 125 Experiment: Event Exercise 02 Lecture 126 Experiment: Event Solution 02 Lecture 127 Experiment: Recap and Homework Lecture 128 Probability Model: Probability Model Lecture 129 Probability Model: Probability Axioms Lecture 130 Probability Model: Probability Axioms Derivations Lecture 131 Probability Model: Probability Axioms Derivations Exercise 01 Lecture 132 Probability Model: Probability Axioms Derivations Solution 01 Lecture 133 Probability Model: Probablility Models Example Lecture 134 Probability Model: Probablility Models More Examples Lecture 135 Probability Model: Probablility Models Continous Lecture 136 Probability Model: Conditional Probability Lecture 137 Probability Model: Conditional Probability Example Lecture 138 Probability Model: Conditional Probability Formula Lecture 139 Probability Model: Conditional Probability in Machine Learning Lecture 140 Probability Model: Conditional Probability Total Probability Theorem Lecture 141 Probability Model: Probablility Models Independence Lecture 142 Probability Model: Probablility Models Conditional Independence Lecture 143 Probability Model: Probablility Models Conditional Independence Exercise 01 Lecture 144 Probability Model: Probablility Models Conditional Independence Solution 01 Lecture 145 Probability Model: Probablility Models BayesRule Lecture 146 Probability Model: Probablility Models towards Random Variables Lecture 147 Probability Model: HomeWork Lecture 148 Random Variables: Introduction Lecture 149 Random Variables: Random Variables Examples Lecture 150 Random Variables: Random Variables Examples Exercise 01 Lecture 151 Random Variables: Random Variables Examples Solution 01 Lecture 152 Random Variables: Bernulli Random Variables Lecture 153 Random Variables: Bernulli Trail Python Practice Lecture 154 Random Variables: Bernulli Trail Python Practice Exercise 01 Lecture 155 Random Variables: Bernulli Trail Python Practice Solution 01 Lecture 156 Random Variables: Geometric Random Variable Lecture 157 Random Variables: Geometric Random Variable Normalization Proof Optional Lecture 158 Random Variables: Geometric Random Variable Python Practice Lecture 159 Random Variables: Binomial Random Variables Lecture 160 Random Variables: Binomial Python Practice Lecture 161 Random Variables: Random Variables in Real DataSets Lecture 162 Random Variables: Random Variables in Real DataSets Exercise 01 Lecture 163 Random Variables: Random Variables in Real DataSets Solution 01 Lecture 164 Random Variables: Homework Lecture 165 Continous Random Variables: Zero Probability to Individual Values Lecture 166 Continous Random Variables: Zero Probability to Individual Values Exercise 01 Lecture 167 Continous Random Variables: Zero Probability to Individual Values Solution 01 Lecture 168 Continous Random Variables: Probability Density Functions Lecture 169 Continous Random Variables: Probability Density Functions Exercise 01 Lecture 170 Continous Random Variables: Probability Density Functions Solution 01 Lecture 171 Continous Random Variables: Uniform Distribution Lecture 172 Continous Random Variables: Uniform Distribution Exercise 01 Lecture 173 Continous Random Variables: Uniform Distribution Solution 01 Lecture 174 Continous Random Variables: Uniform Distribution Python Lecture 175 Continous Random Variables: Exponential Lecture 176 Continous Random Variables: Exponential Exercise 01 Lecture 177 Continous Random Variables: Exponential Solution 01 Lecture 178 Continous Random Variables: Exponential Python Lecture 179 Continous Random Variables: Gaussian Random Variables Lecture 180 Continous Random Variables: Gaussian Random Variables Exercise 01 Lecture 181 Continous Random Variables: Gaussian Random Variables Solution 01 Lecture 182 Continous Random Variables: Gaussian Python Lecture 183 Continous Random Variables: Transformation of Random Variables Lecture 184 Continous Random Variables: Homework Lecture 185 Expectations: Definition Lecture 186 Expectations: Sample Mean Lecture 187 Expectations: Law of Large Numbers Lecture 188 Expectations: Law of Large Numbers Famous Distributions Lecture 189 Expectations: Law of Large Numbers Famous Distributions Python Lecture 190 Expectations: Variance Lecture 191 Expectations: Homework Lecture 192 Project Bayes Classifier: Project Bayes Classifier From Scratch Lecture 193 Multiple Random Variables: Joint Distributions Lecture 194 Multiple Random Variables: Joint Distributions Exercise 01 Lecture 195 Multiple Random Variables: Joint Distributions Solution 01 Lecture 196 Multiple Random Variables: Joint Distributions Exercise 02 Lecture 197 Multiple Random Variables: Joint Distributions Solution 02 Lecture 198 Multiple Random Variables: Joint Distributions Exercise 03 Lecture 199 Multiple Random Variables: Joint Distributions Solution 03 Lecture 200 Multiple Random Variables: Multivariate Gaussian Lecture 201 Multiple Random Variables: Conditioning Independence Lecture 202 Multiple Random Variables: Classification Lecture 203 Multiple Random Variables: Naive Bayes Classification Lecture 204 Multiple Random Variables: Regression Lecture 205 Multiple Random Variables: Curse of Dimensionality Lecture 206 Multiple Random Variables: Homework Lecture 207 Optional Estimation: Parametric Distributions Lecture 208 Optional Estimation: MLE Lecture 209 Optional Estimation: LogLiklihood Lecture 210 Optional Estimation: MAP Lecture 211 Optional Estimation: Logistic Regression Lecture 212 Optional Estimation: Ridge Regression Lecture 213 Optional Estimation: DNN Lecture 214 Mathematical Derivations for Math Lovers: Permutations Lecture 215 Mathematical Derivations for Math Lovers: Combinations Lecture 216 Mathematical Derivations for Math Lovers: Binomial Random Variable Lecture 217 Mathematical Derivations for Math Lovers: Logistic Regression Formulation Lecture 218 Mathematical Derivations for Math Lovers: Logistic Regression Derivation Lecture 219 THANK YOU Section 3: Statistics: Statistical Modeling Made Easy for ALL Lecture 220 Link to the Python codes for the projects and the data Lecture 221 Introduction: Course Introduction Lecture 222 Introduction: AI Sciences Lecture 223 Introduction: Course Outline Lecture 224 Summary Statistics: Module Intoduction Lecture 225 Summary Statistics: Overview Lecture 226 Summary Statistics: Summary Statistics Lecture 227 Summary Statistics: Average Types Lecture 228 Summary Statistics: Mean Lecture 229 Summary Statistics: Median Lecture 230 Summary Statistics: Median Example Lecture 231 Summary Statistics: Mode Lecture 232 Summary Statistics: Case Study For Average Lecture 233 Summary Statistics: IQR Lecture 234 Summary Statistics: Variance Lecture 235 Summary Statistics: Standard Deviation Lecture 236 Summary Statistics: Averages in Python Lecture 237 Summary Statistics: Std Deviation and Variance in Python Lecture 238 Summary Statistics: IQR in Python Lecture 239 Hypothesis Testing: Module Introduction Lecture 240 Hypothesis Testing: Hypothesis Testing Overview Lecture 241 Hypothesis Testing: Terminologies in Hypothesis Testing Lecture 242 Hypothesis Testing: Null Hypothesis Lecture 243 Hypothesis Testing: Alternate Hypothesis Lecture 244 Hypothesis Testing: Test Statistics Lecture 245 Hypothesis Testing: P-Value Lecture 246 Hypothesis Testing: Critical Value Lecture 247 Hypothesis Testing: Level of Significance Lecture 248 Hypothesis Testing: Case Study 1 Lecture 249 Hypothesis Testing: Case Study 2 Lecture 250 Hypothesis Testing: Calculations for Python Lecture 251 Hypothesis Testing: Steps of Hypothesis Testing Lecture 252 Hypothesis Testing: Code Outcomes Lecture 253 Hypothesis Testing: Calculation of Z in Python Lecture 254 Hypothesis Testing: Norm Function Lecture 255 Hypothesis Testing: P Value Python Lecture 256 Correlation and Regression: Module Introduction Lecture 257 Correlation and Regression: Covariance and Correlation Lecture 258 Correlation and Regression: Correlation Lecture 259 Correlation and Regression: Regression Lecture 260 Correlation and Regression: Correlation and Covariance in Python Lecture 261 Correlation and Regression: Entering Input Lecture 262 Correlation and Regression: Linear Regression Results Lecture 263 Multiple Regression: Module Overview Lecture 264 Multiple Regression: Motivation for Multiple Regression Lecture 265 Multiple Regression: Formula for MR Lecture 266 Multiple Regression: Preparing the Data Lecture 267 Multiple Regression: Multiple Regression in Python Beginners in Python and Data Science,Python Enthusiasts looking to apply skills in Data Analysis,Aspiring Data Scientists seeking a strong foundation,Professionals aiming to enhance their statistical modeling skills Homepage |