Logic Design Using Verilog - New Approach! - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Logic Design Using Verilog - New Approach! (/Thread-Logic-Design-Using-Verilog-New-Approach) |
Logic Design Using Verilog - New Approach! - OneDDL - 11-28-2023 Free Download Logic Design Using Verilog - New Approach! Published 11/2023 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 2.20 GB | Duration: 5h 1m Advance Digital Design using verilog. What you'll learn Understand the principles of digital design and how to apply them to the design of digital circuits and systems. Be able to use Verilog to design and simulate a variety of digital circuits, including combinational logic circuits, sequential logic circuits, and state machin Understand logic design concepts and apply it using verilog. Have the skills and knowledge necessary to design and implement complex digital systems for a variety of applications. Requirements A basic understanding of digital design and familiarity with Boolean algebra and logic gates is recommended. Description Embark on a journey into the intricacies of digital design with a focus on advanced techniques using Verilog. This course delves into the realm of vectorized components, including adders, multiplexers, comparators, and D flip-flops, providing a comprehensive understanding of their applications and implementations.Key Topics:Vectorized Adders: Explore advanced methods of designing adders using vectors, enabling efficient and optimized digital circuitry.Vectorized Multiplexers: Learn to create versatile and space-efficient circuits using vectored multiplexers, optimizing resource utilization in digital systems.Vectorized Comparators: Understand the nuances of designing vectored comparators for precise digital signal processing and decision-making.Vectorized D Flip-Flops (DFF): Delve into the world of sequential logic by mastering the design and application of vectored D flip-flops, crucial for building memory elements in digital systems.Circuit Design Approach: Adopt a unique methodology by first conceptualizing and sketching digital circuits on paper. Translate these designs into efficient Verilog code to validate and simulate their behavior.Course Highlights:Hands-On Design Exercises: Engage in practical design exercises that involve drawing digital circuits on paper before implementing them in Verilog, reinforcing a strong connection between theory and application.Real-world Applications: Explore real-world applications of vectorized components, emphasizing their role in cutting-edge digital systems, from signal processing to data storage.Project-Based Learning: Undertake a comprehensive final project that integrates the principles learned throughout the course. This project encourages creativity and problem-solving skills, applying vectorized design techniques to address complex digital challenges.Prerequisites:Basic understanding of digital design fundamentals and Boolean algebra.Familiarity with Verilog programming language basics.Who Should Enroll:Electrical and Computer Engineering students seeking an in-depth understanding of advanced digital design.Professionals in the field of digital system design aiming to enhance their skillset with cutting-edge techniques.Outcome:Upon completion of this course, participants will possess the skills to design complex digital circuits using advanced vectorized components, gaining a competitive edge in the ever-evolving field of digital system design. The ability to seamlessly transition from paper sketches to Verilog code ensures a practical and comprehensive understanding of the design process. Enroll now to elevate your expertise in advanced digital design with Verilog. Overview Section 1: Introduction Lecture 1 Introduction Section 2: Adder Lecture 2 HA and FA Lecture 3 Ripple carry adder Section 3: Mux Lecture 4 Mux Lecture 5 Gates with mux Section 4: Vectored mux Lecture 6 Design Vectored Mux Lecture 7 4:2 Priority encoder Lecture 8 8:3 priority encoder (Solution) Section 5: Comparator Lecture 9 1-bit comparator Lecture 10 Vectored Comparator Section 6: Min-Max logic design Lecture 11 Min-Max Lecture 12 Min-Mid-Max Lecture 13 Min-Midh-Midl-Min (Solution) Section 7: Vectored Adder Lecture 14 Design Vectored Adder Lecture 15 Next Seconds Section 8: Vectored DFF Lecture 16 Design Vectored DFF Lecture 17 3-bit 0 to 7 counter Lecture 18 Mod 5 counter Section 9: Design Project Lecture 19 HMS Counter Lecture 20 Mod 4 Mod 5 counter using FSM Section 10: Verilog Lecture 21 Introduction to Verilog Section 11: Tools Installation Lecture 22 Downloading Modelsim Lecture 23 Installing Modelsim Lecture 24 Running code in edaplayground Section 12: Combinational Logic in Verilog Lecture 25 Basic Gates using Verilog. Lecture 26 HA and FA using basic gates[Verilog] Lecture 27 Modelling Styles Lecture 28 Vectored Mux using Verilog Lecture 29 4:2 priority encoder using Verilog Lecture 30 8:3 Priority encoder using verilog (Solution) Lecture 31 Vectored comparator using verilog (Using waveforms) Lecture 32 Min-Max using verilog Lecture 33 Min-Mid-Max (Solution) Lecture 34 Vectored Adder (with small checker logic) Lecture 35 Next seconds using verilog Section 13: Sequential Logic in Verilog Lecture 36 Vectored DFF using Verilog Lecture 37 3-bit 0 to 7 counter using verilog. Lecture 38 Mod 5 counter using verilog. Section 14: HMS Project in verilog Lecture 39 HMS counter part 1 Lecture 40 HMS counter part 2 Section 15: Verification Lecture 41 Part 2 and Part 3 Section 16: To delete Lecture 42 Logic Gates Lecture 43 Mux Lecture 44 Adders This course on logic design using Verilog is likely to be most suitable for students who have a basic foundation in digital design and are looking to learn how to design and implement digital circuits using the Verilog hardware description language. It may also be suitable for students who are interested in a career in hardware design or who want to expand their skills and knowledge in digital design. Homepage Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live Rapidgator [To see links please register or login] [To see links please register or login] [To see links please register or login] Uploadgig[To see links please register or login] [To see links please register or login] [To see links please register or login] Nitroflare[To see links please register or login] [To see links please register or login] [To see links please register or login] Fikper[To see links please register or login] [To see links please register or login] [To see links please register or login] No Password - Links are Interchangeable |