![]() |
Oreilly - Grokking Machine Learning, video edition - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Oreilly - Grokking Machine Learning, video edition (/Thread-Oreilly-Grokking-Machine-Learning-video-edition--411980) |
Oreilly - Grokking Machine Learning, video edition - AD-TEAM - 05-19-2024 ![]()
Download Free Download : Oreilly - Grokking Machine Learning, video edition
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz Genre:eLearning | Language: English | Size:2.13 GB Files Included : 001 Chapter 1 What is machine learning It is common sense, except done by a computer.mp4 (33.69 MB) MP4 002 Chapter 1 What is machine learning.mp4 (24.3 MB) MP4 003 Chapter 1 Some examples of models that humans use.mp4 (16.29 MB) MP4 004 Chapter 1 Example 4 More.mp4 (13.1 MB) MP4 005 Chapter 2 Types of machine learning.mp4 (21.11 MB) MP4 006 Chapter 2 Supervised learning The branch of machine learning that works with labeled data.mp4 (30.28 MB) MP4 007 Chapter 2 Unsupervised learning The branch of machine learning that works with unlabeled data.mp4 (22.15 MB) MP4 008 Chapter 2 Dimensionality reduction simplifies data without losing too much information.mp4 (23.26 MB) MP4 009 Chapter 2 What is reinforcement learning.mp4 (17.35 MB) MP4 010 Chapter 3 Drawing a line close to our points Linear regression.mp4 (19.14 MB) MP4 011 Chapter 3 The remember step Looking at the prices of existing houses.mp4 (24.57 MB) MP4 012 Chapter 3 Some questions that arise and some quick answers.mp4 (18.2 MB) MP4 013 Chapter 3 Crash course on slope and y-intercept.mp4 (22.39 MB) MP4 014 Chapter 3 Simple trick.mp4 (22.07 MB) MP4 015 Chapter 3 The linear regression algorithm Repeating the absolute or square trick many times to move the line closer to the points.mp4 (20.14 MB) MP4 016 Chapter 3 How do we measure our results The error function.mp4 (21.21 MB) MP4 017 Chapter 3 Gradient descent How to decrease an error function by slowly descending from a mountain.mp4 (28.53 MB) MP4 018 Chapter 3 Real-life application Using Turi Create to predict housing prices in India.mp4 (23.28 MB) MP4 019 Chapter 3 Parameters and hyperparameters.mp4 (21.53 MB) MP4 020 Chapter 4 Optimizing the training process Underfitting, overfitting, testing, and regularization.mp4 (34.94 MB) MP4 021 Chapter 4 How do we get the computer to pick the right model By testing.mp4 (30.4 MB) MP4 022 Chapter 4 A numerical way to decide how complex our model should be The model complexity graph.mp4 (27.39 MB) MP4 023 Chapter 4 Another example of overfitting Movie recommendations.mp4 (23.19 MB) MP4 024 Chapter 4 Modifying the error function to solve our problem Lasso regression and ridge regression.mp4 (25.37 MB) MP4 025 Chapter 4 An intuitive way to see regularization.mp4 (13.54 MB) MP4 026 Chapter 4 Polynomial regression, testing, and regularization with Turi Create.mp4 (15.92 MB) MP4 027 Chapter 4 Polynomial regression, testing, and regularization with Turi Create The testing RMSE for the models follow.mp4 (20.12 MB) MP4 028 Chapter 5 Using lines to split our points The perceptron algorithm.mp4 (31.39 MB) MP4 029 Chapter 5 The problem We are on an alien planet, and we don't know their language!.mp4 (25.01 MB) MP4 030 Chapter 5 Sentiment analysis classifier.mp4 (22.01 MB) MP4 031 Chapter 5 The step function and activation functions A condensed way to get predictions.mp4 (21.6 MB) MP4 032 Chapter 5 The bias, the y-intercept, and the inherent mood of a quiet alien.mp4 (26.38 MB) MP4 033 Chapter 5 Error function 3 Score.mp4 (19.47 MB) MP4 034 Chapter 5 Pseudocode for the perceptron trick (geometric).mp4 (22.03 MB) MP4 035 Chapter 5 Bad classifier.mp4 (22.35 MB) MP4 036 Chapter 5 Pseudocode for the perceptron algorithm.mp4 (29.39 MB) MP4 037 Chapter 5 Coding the perceptron algorithm using Turi Create.mp4 (26.92 MB) MP4 038 Chapter 6 A continuous approach to splitting points Logistic classifiers.mp4 (30.87 MB) MP4 039 Chapter 6 The dataset and the predictions.mp4 (16.21 MB) MP4 040 Chapter 6 Error function 3 log loss.mp4 (25.2 MB) MP4 041 Chapter 6 Formula for the log loss.mp4 (30.55 MB) MP4 042 Chapter 6 Pseudocode for the logistic trick.mp4 (19.5 MB) MP4 043 Chapter 6 Coding the logistic regression algorithm.mp4 (21.57 MB) MP4 044 Chapter 6 Classifying into multiple classes The softmax function.mp4 (22.94 MB) MP4 045 Chapter 7 How do you measure classification models Accuracy and its friends.mp4 (26.06 MB) MP4 047 Chapter 7 Recall Among the positive examples, how many did we correctly classify.mp4 (28.31 MB) MP4 048 Chapter 7 Combining recall and precision as a way to optimize both The F-score.mp4 (26.53 MB) MP4 049 Chapter 7 A useful tool to evaluate our model The receiver operating characteristic (ROC) curve.mp4 (16.34 MB) MP4 050 Chapter 7 The receiver operating characteristic (ROC) curve A way to optimize sensitivity and specificity in a model.mp4 (20.25 MB) MP4 051 Chapter 7 A metric that tells us how good our model is The AUC (area under the curve).mp4 (20.18 MB) MP4 052 Chapter 7 Recall is sensitivity, but precision and specificity are different.mp4 (14.65 MB) MP4 053 Chapter 7 Summary.mp4 (18.67 MB) MP4 054 Chapter 8 Using probability to its maximum The naive Bayes model.mp4 (21.93 MB) MP4 055 Chapter 8 Sick or healthy A story with Bayes' theorem as the hero Let's calculate this probability.mp4 (16.97 MB) MP4 056 Chapter 8 Prelude to Bayes' theorem The prior, the event, and the posterior.mp4 (22.7 MB) MP4 057 Chapter 8 What the math just happened Turning ratios into probabilities.mp4 (19.53 MB) MP4 058 Chapter 8 What the math just happened Turning ratios into probabilitiesProduct rule of probabilities.mp4 (8.47 MB) MP4 059 Chapter 8 What about two words The naive Bayes algorithm.mp4 (32.54 MB) MP4 060 Chapter 8 What about more than two words.mp4 (12.73 MB) MP4 061 Chapter 8 Implementing the naive Bayes algorithm.mp4 (16.52 MB) MP4 062 Chapter 9 Splitting data by asking questions Decision trees.mp4 (22.41 MB) MP4 063 Chapter 9 Picking a good first question.mp4 (27.36 MB) MP4 064 Chapter 9 The solution Building an app-recommendation system.mp4 (16.07 MB) MP4 065 Chapter 9 Gini impurity index How diverse is my dataset.mp4 (14.18 MB) MP4 066 Chapter 9 Entropy Another measure of diversity with strong applications in information theory.mp4 (20.82 MB) MP4 067 Chapter 9 Classes of different sizes No problem We can take weighted averages.mp4 (26.38 MB) MP4 068 Chapter 9 Beyond questions like yesno.mp4 (17.87 MB) MP4 069 Chapter 9 The graphical boundary of decision trees.mp4 (17.93 MB) MP4 070 Chapter 9 Setting hyperparameters in Scikit-Learn.mp4 (29.43 MB) MP4 071 Chapter 9 Applications.mp4 (17.57 MB) MP4 072 Chapter 10 Combining building blocks to gain more power Neural networks.mp4 (25.95 MB) MP4 073 Chapter 10 Why two lines Is happiness not linear.mp4 (24 MB) MP4 074 Chapter 10 The boundary of a neural network.mp4 (26.12 MB) MP4 075 Chapter 10 Potential problems From overfitting to vanishing gradients.mp4 (27.65 MB) MP4 076 Chapter 10 Neural networks with more than one output The softmax function.mp4 (21.24 MB) MP4 077 Chapter 10 Training the model.mp4 (22.22 MB) MP4 078 Chapter 10 Other architectures for more complex datasets.mp4 (20.16 MB) MP4 079 Chapter 10 How neural networks paint paintings Generative adversarial networks (GAN).mp4 (24.66 MB) MP4 080 Chapter 11 Finding boundaries with style Support vector machines and the kernel method.mp4 (24.86 MB) MP4 081 Chapter 11 Distance error function Trying to separate our two lines as far apart as possible.mp4 (21.68 MB) MP4 082 Chapter 11 Training SVMs with nonlinear boundaries The kernel method.mp4 (23.62 MB) MP4 083 Chapter 11 Going beyond quadratic equations The polynomial kernel.mp4 (27.9 MB) MP4 084 Chapter 11 A measure of how close points are Similarity.mp4 (23.49 MB) MP4 085 Chapter 11 Overfitting and underfitting with the RBF kernel The gamma parameter.mp4 (22.23 MB) MP4 086 Chapter 12 Combining models to maximize results Ensemble learning.mp4 (26.51 MB) MP4 087 Chapter 12 Fitting a random forest manually.mp4 (21.17 MB) MP4 088 Chapter 12 Combining the weak learners into a strong learner.mp4 (21.33 MB) MP4 089 Chapter 12 Gradient boosting Using decision trees to build strong learners.mp4 (22.65 MB) MP4 090 Chapter 12 XGBoost similarity score A new and effective way to measure similarity in a set.mp4 (15.3 MB) MP4 091 Chapter 12 Building the weak learners Split at 25.mp4 (13.32 MB) MP4 092 Chapter 12 Tree pruning A way to reduce overfitting by simplifying the weak learners.mp4 (24.39 MB) MP4 093 Chapter 13 Putting it all in practice A real-life example of data engineering and machine learning.mp4 (29.3 MB) MP4 094 Chapter 13 Using Pandas to study our dataset.mp4 (21.04 MB) MP4 095 Chapter 13 Turning categorical data into numerical data One-hot encoding.mp4 (29.01 MB) MP4 096 Chapter 13 Feature selection Getting rid of unnecessary features.mp4 (23.54 MB) MP4 097 Chapter 13 Testing each model's accuracy.mp4 (18.94 MB) MP4 098 Chapter 13 Tuning the hyperparameters to find the best model Grid search.mp4 (20.26 MB) MP4 [To see links please register or login] ![]() Free search engine download: Oreilly - Grokking Machine Learning, video edition |