![]() |
Udemy Comprehensive Feature Engineering for Machine Learning - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Udemy Comprehensive Feature Engineering for Machine Learning (/Thread-Udemy-Comprehensive-Feature-Engineering-for-Machine-Learning) |
Udemy Comprehensive Feature Engineering for Machine Learning - AD-TEAM - 08-30-2024 ![]() 1.51 GB | 00:23:13 | mp4 | 1280X720 | 16:9 Genre:eLearning |Language:English
Files Included :
2 Feature Engineering and Data Pre-Processing (22.16 MB) 1 Introduction to Outliers (23.78 MB) 2 Capturing Outliers (65.2 MB) 3 Defining a Function to Detect Outliers (45.27 MB) 4 Grabbing Column Names (85.83 MB) 5 Accessing Outliers (31.29 MB) 6 Solving the Outlier Problem (45.63 MB) 7 Local Outlier Factor (114.24 MB) 1 Introduction to Missing Values (17.66 MB) 2 Capturing Missing Values (40.72 MB) 3 Solving the Missing Value Problem (53.74 MB) 4 Assigning a Value to Categorical Variables (27.08 MB) 5 Predictive Assignments (58.3 MB) 6 Analyzing the Structure of Missing Data (25.39 MB) 7 Analyzing Missing Values with Dependent Variable (65.93 MB) 1 Label Encoding (10.34 MB) 2 Label Encoding - Application (55.94 MB) 3 One-Hot Encoding (12.97 MB) 4 One-Hot Encoding - Application (45.93 MB) 5 Rare Encoding (14.26 MB) 6 Rare Encoding - Application (61.01 MB) 7 Rare Encoding - Function (61.9 MB) 8 Feature Scaling (21.29 MB) 9 Feature Scaling - Application (54.14 MB) 1 Introduction to Feature Extraction (28.46 MB) 2 Binary Features (54.66 MB) 3 Text Features (30.96 MB) 4 Regex Features (25.94 MB) 5 Date Features (21.46 MB) 6 Feature Interactions (28.55 MB) 1 Introduction (22.83 MB) 2 Outliers (2.67 MB) 3 Missing Values (15.84 MB) 4 Label Encoding (4.4 MB) 5 Rare Encoding (8.78 MB) 6 One-Hot Encoding (31.54 MB) 7 Standard Scaler (5.44 MB) 8 Model (45.33 MB)
Screenshot
![]() |