Softwarez.Info - Software's World!
Tunstall L. Natural Language Processing with Transformers...Revised Ed 2022 [... - Printable Version

+- Softwarez.Info - Software's World! (https://softwarez.info)
+-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone)
+--- Forum: E-Books (https://softwarez.info/Forum-E-Books)
+--- Thread: Tunstall L. Natural Language Processing with Transformers...Revised Ed 2022 [... (/Thread-Tunstall-L-Natural-Language-Processing-with-Transformers-Revised-Ed-2022)



Tunstall L. Natural Language Processing with Transformers...Revised Ed 2022 [... - Farid - 05-17-2023

Tunstall L. Natural Language Processing with Transformers...Revised Ed 2022 [PDF] [English]

[Image: Tunstall-L-Natural-Language-Processing-w...d-2022.jpg]

Info:
  • Title: Natural Language Processing with Transformers, Revised Edition
    Pages: 409
    Author: Lewis Tunstall;Leandro von Werra;Thomas Wolf;
    Year: 2022
    Subjects:
    Category: Natural Language Processing, Business Software, Natural Language Processing
    Publisher: ‎ O'Reilly Media; 1st edition
    ISBN: ‎ B0B2FKYVNL

Description:
Quote:Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library.
Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve.
  • Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering
    Learn how transformers can be used for cross-lingual transfer learning
    Apply transformers in real-world scenarios where labeled data is scarce
    Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization
    Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments

Files:
Tunstall L. Natural Language Processing with Transformers...Revised Ed 2022.pdf (17.27 MB)

FileFactory Link(s)

[To see links please register or login]

NitroFlare Link(s)

[To see links please register or login]


RapidGator Link(s)

[To see links please register or login]