Data Analytics Masters - From Basics To Advanced - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Data Analytics Masters - From Basics To Advanced (/Thread-Data-Analytics-Masters-From-Basics-To-Advanced--580230) |
Data Analytics Masters - From Basics To Advanced - AD-TEAM - 09-21-2024 Data Analytics Masters - From Basics To Advanced Published 9/2024 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 34.43 GB | Duration: 46h 12m Master Data Analysis: Learn Python, EDA, Stats, MS Excel, SQL, Power BI, Tableau, Predictive Analytics & ETL Basics
[b]What you'll learn[/b] Discover how to effectively handle, analyze, and visualize data using Python and its robust libraries, including Pandas, NumPy, Matplotlib, and Seaborn. Learn how to conduct Exploratory Data Analysis (EDA) to reveal insights, detect patterns, and prepare data for further analysis through effective visualization Acquire the skills to extract, manipulate, and aggregate data using SQL. You will utilize MySQL to handle complex databases and execute sophisticated queri Master the art of creating interactive and insightful dashboards using Power BI and Tableau. You'll apply DAX for complex calculations in Power BI and integrate Explore the fundamentals of machine learning, including classification, regression, and time series analysis, to enhance your predictive analytics skills. Learn the fundamentals of ETL processes to effectively extract, transform, and load data for analysis. [b]Requirements[/b] No pre-requisites are required for this course [b]Description[/b] Congrats on enrolling in the Data Analytics Masters Course!!Need of Data AnalyticsThe outburst of data is transforming businesses. Companies - big or small - are now expecting their business decisions to be based on data-led insight.Data specialists have a tremendous impact on business strategies and marketing tactics.The demand for data specialists is on the rise while the supply remains low, thus creating great job opportunities for individuals within this field.Today, it is almost impossible to find any brand that does not have a social media presence; soon, every company will need data analytics professionals.This makes it a wise career move that has a future in business.Job Roles after the courseThis course will help you to step forward in Data Analytics and choose the following rolesData AnalystBusiness AnalystBI AnalystBI DeveloperPower BI DeveloperTableau Developerand many more.Syllabus:Module 1: Python for Data AnalyticsModule 2: Exploratory Data AnalysisModule 3: Business StatisticsModule 4: SQLModule 5: Microsoft ExcelModule 6: Power BIModule 7: TableauModule 8: Predictive ModellingModule 9: Data Warehousing and ETLModule 10: Interview GuidesModule 11: Capstone ProjectsConclusion:By the end of this course, you'll have a strong foundation in data analysis and the confidence to tackle real-world data problems. You'll be ready to step into a data analyst role with a robust portfolio of projects to showcase your skills.Enroll now and start your journey to becoming a proficient Data Analyst! Overview Section 1: Introduction Lecture 1 Welcome Page Lecture 2 Welcome to the Course Lecture 3 What is Data Analytics Lecture 4 Importance of Data Analytics Lecture 5 Types of Data Lecture 6 Types of Statistical Analysis Lecture 7 Steps to obtain a Data Analytics solution Lecture 8 Business Understanding Lecture 9 Data Understanding Lecture 10 Data Collection Lecture 11 Data Preparation Lecture 12 Data Modelling Lecture 13 Deployment Lecture 14 Use Case Section 2: Python Lecture 15 Course Contents Lecture 16 Introduction to Python Lecture 17 Variables & Keywords Lecture 18 Datatypes Operators Lecture 19 Lists Lecture 20 Tuples Lecture 21 Sets Lecture 22 Doctionary Lecture 23 Loops & Iteration Lecture 24 Functions Lecture 25 Map Reduce Filter Lecture 26 File Handling Lecture 27 Control Structures Lecture 28 OOPS Lecture 29 NumPy Lecture 30 Pandas Lecture 31 Data Visualization Lecture 32 Matplotlib Lecture 33 Seaborn Section 3: Business Statistics Lecture 34 Course Contents Lecture 35 Introduction Lecture 36 Types of Data (Agenda) Lecture 37 Descriptive Stats Lecture 38 Inferential Stats Lecture 39 Qualitative Data Lecture 40 Quantitative Data Lecture 41 Sampling Techniques (Agenda) Lecture 42 Population vs Sample Lecture 43 Why Sampling is important Lecture 44 Types of Sampling Lecture 45 Cluster Random Sampling Lecture 46 Probability Sampling Lecture 47 Non probability sampling Lecture 48 Population Sampling Lecture 49 Why n-1 and not n Lecture 50 Descriptive Analytics (Agenda) Lecture 51 Measures of Central Tendency Lecture 52 Mean Lecture 53 Median Lecture 54 Mode Lecture 55 Measures of Dispersion Lecture 56 Range Lecture 57 IQR Lecture 58 Variance Standard Deviation Lecture 59 Mean Deviation Lecture 60 Probability (Agenda) Lecture 61 Probability Lecture 62 Addition Rule Lecture 63 Independent Events Lecture 64 Cumulative Probability Lecture 65 Conditional Probability Lecture 66 Bayes Theorem 1 Lecture 67 Bayes Theorem 2 Lecture 68 Probability Distrubution (Agenda) Lecture 69 Uniform Distribution Lecture 70 Binomial Distribution Lecture 71 Poisson Distribution Lecture 72 Normal Distribution Part 1 Lecture 73 Normal Distribution Part 2 Lecture 74 Skewness Lecture 75 Kurtosis Lecture 76 Calculating Probability with Z-score for Normal Distribution Part 1 Lecture 77 Calculating Probability with Z-score for Normal Distribution Part 2 Lecture 78 Calculating Probability with Z-score for Normal Distribution Part 3 Lecture 79 Covariance & Correlation (Agenda) Lecture 80 Covariance Lecture 81 Correlation Lecture 82 Covariance VS Correlation Lecture 83 ANOVA Lecture 84 Hypothesis Testing Lecture 85 Tailed Tests Lecture 86 p-value Lecture 87 Types of Test Lecture 88 T Test Lecture 89 Z Test Lecture 90 Chi Square Test Lecture 91 Correlation Test (Practicals) Section 4: Exploratory Data Analysis Lecture 92 Course Contents Lecture 93 Agenda Lecture 94 DA,DS Process Lecture 95 What is EDA Lecture 96 Visualization Lecture 97 Steps involved in EDA (Data Sourcing) Lecture 98 Steps involved in EDA (Data Cleaning) Lecture 99 Handle Missing Values (Theory) Lecture 100 Handle Missing Values (Practicals) Lecture 101 Feature Scaling (Theory) Lecture 102 Standardization Example Lecture 103 Normalization Example Lecture 104 Feature Scaling (Practicals) Lecture 105 Outlier Treatment (Theory) Lecture 106 Outlier Treatment (Practicals) Lecture 107 Invalid Data Lecture 108 Types of Data Lecture 109 Types of Analysis Lecture 110 Univariate Analysis Lecture 111 Bivariate Analysis Lecture 112 Multivariate Analysis Lecture 113 Numerical Analysis Lecture 114 Analysis Practicals Lecture 115 Derived Metrics Lecture 116 Feature Binning (Theory) Lecture 117 Feature Binning (Practicals) Lecture 118 Feature Encoding (Theory) Lecture 119 Feature Encoding (Practicals) Lecture 120 Case Study Lecture 121 Data Exploration Lecture 122 Data Cleaning Lecture 123 Univariate Analysis Lecture 124 Bivariate Analysis Part 1 Lecture 125 Bivariate Analysis Part 2 Lecture 126 EDA Report Section 5: SQL Lecture 127 Course Contents Lecture 128 Installation Lecture 129 Data Architecture - File server vs client server Lecture 130 Introduction to SQL Lecture 131 Constraints in SQL Lecture 132 Table Basics - DDLs Lecture 133 Table Basics - DQLs Lecture 134 Table Basics - DMLs Lecture 135 Joins Lecture 136 Data Import Export Lecture 137 Aggregation Functions Lecture 138 String functions Lecture 139 Date Time Functions Lecture 140 Regular Expressions Lecture 141 Nested Queries Lecture 142 Views Lecture 143 Stored Procedures Lecture 144 Windows Function Lecture 145 SQL Python connectivity Section 6: Microsoft Excel Lecture 146 Course Contents Lecture 147 Pre-defined Functions Lecture 148 Datetime Functions Lecture 149 String Functions Lecture 150 Mathematical Functions Lecture 151 Lookup (Hlookup,Vlookup) Lecture 152 Logical & Error Functions Lecture 153 Statistical Functions Lecture 154 Images in Excel Lecture 155 Excel Formatting Lecture 156 Custom Formatting Lecture 157 Conditional Formatting Lecture 158 Charts in Excel Lecture 159 Data Analysis using Excel Lecture 160 Pivot Tables Lecture 161 Dashboarding in Excel Lecture 162 Others Lecture 163 What-If Tools - Scenario Manager, Goal Seek Section 7: Power BI Lecture 164 Course Contents Lecture 165 Introduction Lecture 166 Life Hack (How to have Power BI Pro License) Lecture 167 Power BI Desktop Lecture 168 Power BI Services Lecture 169 Power Query Editor Lecture 170 Data Profiling Lecture 171 Group by Dialog Lecture 172 Applied Steps Lecture 173 Append vs Merge Lecture 174 Power BI Visuals Lecture 175 Power BI Charts Lecture 176 Introduction to DAX Lecture 177 Implicit Measures Lecture 178 DAX Formula Lecture 179 Basic DAX Functions Lecture 180 Date Functions Lecture 181 CALENDAR Functions Lecture 182 Contexts Row vs Filter Lecture 183 CALCULATE & FILTER Lecture 184 IF ELSE Conditions Lecture 185 Time Intelligence Functions Lecture 186 X vs Non X Functions Lecture 187 Tool Tips & Drill Throughs Lecture 188 Power BI Relationships Lecture 189 KPIs in Power BI Lecture 190 Administration in Power BI Lecture 191 Static Row Level Security Lecture 192 Dynamic Row Level Security Lecture 193 Formatting Lecture 194 Best Practices Lecture 195 EDA Lecture 196 Live Projects Section 8: Tableau Lecture 197 Course Contents Lecture 198 What is Data Visualization Lecture 199 BI Process Lecture 200 What is Tableau Lecture 201 Features of Tableau Lecture 202 How to use Tableau Lecture 203 Tableau Architecture Lecture 204 Tableau Desktop Lecture 205 Tableau vs Power BI Lecture 206 Relationships, Joins , Unions Lecture 207 Sets in Tableau Lecture 208 Groups in Tableau Lecture 209 Hierarchies in Tableau Lecture 210 Filters in Tableau Lecture 211 Highlighting Lecture 212 Device Deisgner Lecture 213 Parameters Lecture 214 Data Blending Lecture 215 Transparency Lecture 216 Date Aggregation Lecture 217 Generated Fields Lecture 218 Discrete vs Continuous Lecture 219 Charts in Tableau Lecture 220 Pivot Tables in Tableau Lecture 221 LOD Expressions Lecture 222 Calculated Fields Lecture 223 Formatting Lecture 224 Forecasting in Tableau Lecture 225 Analytics in Tableau Lecture 226 Dashboarding Section 9: Predictive Analytics Lecture 227 Course Contents Lecture 228 Introduction Lecture 229 Predictive Analytics Process Lecture 230 How model works Lecture 231 Why Predictive Analytics Lecture 232 Applications Lecture 233 What is Machine Learning Lecture 234 Types Of Machine Learning Lecture 235 Classification Lecture 236 KNN Lecture 237 KNN Excel example Lecture 238 Classification Practical Lecture 239 KNN Code Lecture 240 Decision Tree Example Lecture 241 Decision Tree Code Lecture 242 Random Forest Lecture 243 Random Forest Code Lecture 244 Boosting Lecture 245 Boosting Code Lecture 246 Regression Theory Lecture 247 Regression Theory Code Lecture 248 Clustering Lecture 249 Clustering Procticals Lecture 250 Time Series Lecture 251 Time Series Forecasting Code Section 10: ETL Lecture 252 Course Contents Lecture 253 Introduction Lecture 254 What is ETL Lecture 255 ETL Tools Lecture 256 What is Data Warehouse Lecture 257 Benefits of Data Warehouse Lecture 258 Data Warehouse Structure Lecture 259 Why do we need Staging Lecture 260 What are Data Marts Lecture 261 Data Lake Lecture 262 Data lake vs Data Warehouse Lecture 263 Elements of Data lake Section 11: Interview Q&A Guides Lecture 264 Interview Guides Section 12: Capstone Projects Lecture 265 Churn Analysis (Power BI) Lecture 266 HR Analytics (Tableau) Complete beginners interested to learn Data Analytics can join this program,Any Technical or Non Technical person can enroll for this program |