Platform Engineering: Build Scalable & Resilient Systems - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Platform Engineering: Build Scalable & Resilient Systems (/Thread-Platform-Engineering-Build-Scalable-Resilient-Systems) |
Platform Engineering: Build Scalable & Resilient Systems - BaDshaH - 09-26-2024 Published 9/2024 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 21.50 GB | Duration: 40h 5m Learn DevOps, Infrastructure as Code, CI/CD, Kubernetes, more. Prepare for a successful career in platform engineering! What you'll learn Understand and Define Platform Engineering: Grasp the fundamental concepts, importance, benefits, and challenges of Platform Engineering. Master Infrastructure as Code (IaC): Implement IaC effectively using tools like Terraform and Ansible, enabling consistent & automated infrastructure. Design and Implement CI/CD Pipelines: Understand the principles of Continuous Integration & Continuous Delivery, build efficient pipelines, apply best practices Embrace Cloud-Native Technologies: Learn benefits & challenges of cloud-native architectures, hands-on with Kubernetes for container orchestration & deployment. Leverage Observability Tools: Implement monitoring, logging, and metrics collection with tools like Prometheus and Grafana for platform performance and health. Understand Platform Design Principles: Apply key design principles to build self-service platforms that empower development teams and improve overall efficiency Prepare for Platform Engineering Interviews: Develop a strong resume, practice answering common interview questions, and gain confidence through mock interviews Apply Platform Engineering Principles in Real-World Scenarios: Understand practical examples & implementation strategies to bridge gap between theory & practice Enhance Collaboration and Communication Skills: Foster DevOps culture necessary for effective collaboration and communication within cross-functional teams. Requirements Enthusiasm and determination to make your mark on the world! Description A warm welcome to the Platform Engineering: Build Scalable & Resilient Systems course by Uplatz.Platform Engineering is a discipline in software development focused on building and maintaining an internal platform that enhances the productivity and efficiency of developers and operations teams. The goal is to provide reusable, scalable, and automated infrastructure solutions that streamline the software development lifecycle, enabling faster delivery of applications.In essence, platform engineering allows for the creation of a standardized, highly automated environment where developers can focus on writing code, while platform engineers manage the complexity of the underlying infrastructure. This leads to improved developer experience, faster deployments, and reduced operational overhead.Key Aspects of Platform Engineering:Internal Developer Platform (IDP): Platform engineers design and build IDPs, which are custom platforms tailored to meet the specific needs of the development teams within an organization. These platforms typically abstract away complex infrastructure concerns, providing a unified and self-service environment where developers can easily deploy, monitor, and manage their applications.Automation: A core principle of platform engineering is automation. This includes automating infrastructure provisioning (using Infrastructure as Code), CI/CD pipelines, monitoring, and logging. The aim is to reduce manual intervention and repetitive tasks.Self-Service Capabilities: The platform provides self-service tools, allowing developers to independently create environments, deploy applications, and troubleshoot issues without relying on other teams (such as DevOps). This boosts developer autonomy and shortens development cycles.Scalability and Reliability: Platforms built by platform engineers are designed to scale with the needs of the business. They integrate fault-tolerance, monitoring, and observability to ensure high availability and reliability, crucial for large-scale applications.Collaboration between DevOps, Security, and Developers: Platform engineering bridges the gap between DevOps teams, developers, and security teams. It aligns infrastructure, tooling, and workflows with the requirements of each group, ensuring compliance, security, and faster software delivery.How Platform Engineering Works:Infrastructure as Code (IaC): Platform engineers use IaC tools (like Terraform, Ansible, or Pulumi) to automate and manage the underlying infrastructure, ensuring it can be provisioned and maintained consistently across different environments (development, staging, production).CI/CD Pipeline Integration: They integrate Continuous Integration/Continuous Deployment (CI/CD) pipelines into the platform. This involves tools like Jenkins, GitLab CI, or GitHub Actions to automate testing, building, and deployment processes.Containerization and Orchestration: Platform engineers leverage containers (e.g., Docker) and orchestration platforms (like Kubernetes) to abstract applications from the underlying infrastructure, making deployments consistent and scalable across environments.Observability and Monitoring: Platform engineers implement monitoring, logging, and alerting tools (e.g., Prometheus, Grafana, ELK Stack) to ensure the health, performance, and security of the applications running on the platform. These insights help in proactive troubleshooting and maintenance.Security and Governance: Security best practices are embedded into the platform, such as managing secrets (with HashiCorp Vault), ensuring compliance with organizational standards, and enforcing access control and security policies.Collaboration and Tooling: Tools are designed with usability in mind, allowing developers to access necessary resources through a unified interface (like a dashboard or CLI). This allows for consistent communication between platform engineers and development teams to ensure the platform evolves with their needs.Platform Engineering - Course CurriculumModule 1: Introduction to Platform EngineeringLecture 1: Define Platform Engineering, its importance, benefits, and challenges. Discuss the future of Platform Engineering.Module 2: Core ConceptsLecture 2: Explore the benefits of Infrastructure as Code (IaC) and learn about popular tools like Terraform and Ansible.Lecture 3: Understand CI/CD pipelines, their components, and best practices.Lecture 4: Learn about self-service platforms, their purpose, and design principles. Explore Platform APIs, their role, and development considerations.Lecture 5: Master platform observability, including metrics, logging, and monitoring.Lecture 6: Deep dive into platform observability, monitoring, and the future of observability.Module 3: Cloud-NativeLecture 7: Introduction to cloud-native concepts, benefits, and challenges.Lecture 8: Real-world examples of cloud-native and its future.Lecture 9: Introduction to Kubernetes architecture, components, and cluster management.Lecture 10: Container orchestration, deployment strategies, and best practices.Lecture 11: Serverless computing, use cases, benefits, challenges, and future.Lecture 12: Cloud security, best practices, and common threats.Module 4: Design Principles and Shell ScriptingLecture 13: Understand the design principles behind platform engineering.Lecture 14: Recap and connect the terminologies learned so far.Lecture 15 & 16: Introduction to Shell Scripting.Lecture 17: Implementation of Shell Commands and Cocalc.Lecture 18: CHMO - Understanding Programming BasicsModule 5: Kubernetes and Platform LifecycleLecture 19 & 20: Implementation of Kubernetes.Lecture 21: Platform lifecycle management, including planning, development, deployment, and operations.Module 6: Observability with GrafanaLecture 22: Understanding Grafana for observability.Lecture 23: Connecting Grafana and other automation tools.Lecture 24: Grafana Labs connections.Module 7: DevOps and ToolingLecture 25: Understanding Jenkins.Lecture 26: Connection between Kubernetes and JenkinsLecture 27: DevOps implementationLecture 28: Service connectionLecture 29: Platform Engineering documentationLecture 30: Understanding Redhat OpenShiftLecture 31: Understanding GitLabModule 8: Practical Examples and Interview PreparationLecture 32: Practical examples of Platform Engineering and implementationLecture 33 & 34: How to make a resume for Platform Engineering rolesLecture 35 & 36: Common Platform Engineering interview questions and answersLecture 37: Tips and rules for interviewsLecture 38, 39 & 40: Company-oriented interview questionsLecture 41: Top questions and framing answersLecture 42: LinkedIn sessionCourse RecapFinal Lecture: Review key concepts, achievements, and next steps.Benefits of Learning Platform Engineering1. Enhanced Career OpportunitiesPlatform engineering is a rapidly growing field with high demand for skilled professionals. By mastering platform engineering, you'll unlock a wealth of career opportunities, including roles such aslatform EngineerCloud ArchitectDevOps EngineerSite Reliability Engineer (SRE)Software Engineer specializing in InfrastructureTechnical Lead or Manager2. Increased Earning PotentialDue to the high demand and specialized skillset required, platform engineers command competitive salaries and benefits.3. Improved Technical SkillsYou'll gain proficiency in a wide array of cutting-edge technologies and tools, including:Infrastructure as Code (IaC) (Terraform, Ansible)CI/CD Pipelines (Jenkins, GitLab CI/CD)Container Orchestration (Kubernetes)Cloud Platforms (AWS, Azure, GCP)Monitoring and Observability (Prometheus, Grafana)4. Greater Impact and InfluencePlatform engineers play a crucial role in enabling and empowering development teams. You'll have a direct impact on the efficiency, productivity, and success of the entire organization.5. Problem-Solving and InnovationYou'll be challenged to think critically, solve complex problems, and find creative solutions to streamline software delivery and optimize the development experience.6. Professional Growth and DevelopmentPlatform engineering is a constantly evolving field. By staying current with emerging trends and technologies, you'll ensure continuous professional growth and development.Career Path in Platform EngineeringThe typical career path in platform engineering often starts with roles like:Software Engineer/Developer: Gaining experience in building and deploying applications lays a strong foundation for understanding developer needs and pain points.DevOps Engineer: Building on development experience, DevOps engineers gain experience in automating and streamlining the software delivery process.System Administrator: Experience in managing and maintaining infrastructure can be leveraged to transition into automating infrastructure provisioning and management.From there, individuals can progress into specialized platform engineering roles, such aslatform Engineer: Focus on designing, building, and maintaining internal developer platforms.Cloud Architect: Design and implement cloud solutions incorporating platform engineering principles.Site Reliability Engineer (SRE): Focus on ensuring the reliability and performance of the platform and its applications.With experience and expertise, platform engineers can move into leadership positions like:Technical Lead or Manager: Lead and mentor teams of platform engineers.Director of Platform Engineering: Oversee the strategy and execution of platform initiatives across the organization. Overview Section 1: Introduction to Platform Engineering - Benefits, Challenges, Future Lecture 1 Introduction to Platform Engineering - Benefits, Challenges, Future Section 2: Infrastructure-as-Code (IaC) with Terraform and Ansible Lecture 2 Infrastructure-as-Code (IaC) with Terraform and Ansible Section 3: Continuous Integration (CI) and Continuous Delivery (CD) Lecture 3 Continuous Integration (CI) and Continuous Delivery (CD) Section 4: API and Platform API Lecture 4 API and Platform API Section 5: Platform Observability - Metrics and Logging Lecture 5 Platform Observability - Metrics and Logging Section 6: Platform Observability - Monitoring and Future of Observability Lecture 6 Part 1 - Platform Observability - Monitoring and Future of Observability Lecture 7 Part 2 - Platform Observability - Monitoring and Future of Observability Section 7: Introduction to Cloud Native - Benefits and Challenges Lecture 8 Introduction to Cloud Native - Benefits and Challenges Section 8: Real-world Example of Cloud Native and Future Aspects Lecture 9 Real-world Example of Cloud Native and Future Aspects Section 9: Introduction to Kubernetes Lecture 10 Introduction to Kubernetes Section 10: Container Orchestration Lecture 11 Container Orchestration Section 11: Serverless Computing - Benefits, Challenges, Future Lecture 12 Serverless Computing - Benefits, Challenges, Future Section 12: Cloud Security - Best Practices and Future Lecture 13 Cloud Security - Best Practices and Future Section 13: Understanding the Design Principles Lecture 14 Understanding the Design Principles Section 14: Recap and Connecting the Terminologies Lecture 15 Recap and Connecting the Terminologies Section 15: Understand Shell Scripting Lecture 16 Part 1 - Understand Shell Scripting Lecture 17 Part 2 - Understand Shell Scripting Section 16: Shell Commands and CoCalc (Collaborative Calculation and Data Science) Lecture 18 Shell Commands and CoCalc (Collaborative Calculation and Data Science) Section 17: Understand Programming Basics Lecture 19 Understand Programming Basics Section 18: Implementation of Kubernetes Lecture 20 Part 1 - Implementation of Kubernetes Lecture 21 Part 2 - Implementation of Kubernetes Section 19: Platform Lifecycle Lecture 22 Platform Lifecycle Section 20: Grafana Lecture 23 Grafana for Observability Lecture 24 Connecting Grafana and other Automation Tools Lecture 25 Grafana Labs Connections Section 21: Understanding Jenkins Lecture 26 Understanding Jenkins Section 22: Connection between Kubernetes and Jenkins Lecture 27 Connection between Kubernetes and Jenkins Section 23: DevOps Implementation Lecture 28 DevOps Implementation Section 24: Service Connection Lecture 29 Service Connection Section 25: Platform Engineering Documentation Lecture 30 Platform Engineering Documentation Section 26: Red Hat OpenShift Lecture 31 Red Hat OpenShift Section 27: Understanding GitLab Lecture 32 Understanding GitLab Section 28: Practical Example of Platform Engineering and its Implementation Lecture 33 Practical Example of Platform Engineering and its Implementation Section 29: How to make Resume for Platform Engineering and DevOps Lecture 34 Part 1 - How to make Resume for Platform Engineering and DevOps Lecture 35 Part 2 - How to make Resume for Platform Engineering and DevOps Section 30: Interview Questions on Platform Engineering Lecture 36 Part 1 - Interview Questions on Platform Engineering Lecture 37 Part 2 - Interview Questions on Platform Engineering Section 31: Tips and Key Points for Platform Engineer Interview Lecture 38 Tips and Key Points for Platform Engineer Interview Section 32: Company-oriented PE Interview Questions Lecture 39 Part 1 - Company-oriented PE Interview Questions Lecture 40 Part 2 - Company-oriented PE Interview Questions Lecture 41 Part 3 - Company-oriented PE Interview Questions Section 33: Top Questions and Framing Answers for Platform Engineer Interviews Lecture 42 Top Questions and Framing Answers for Platform Engineer Interviews Section 34: LinkedIn Profile for a Platform Engineer Lecture 43 LinkedIn Profile for a Platform Engineer Software Engineers and Developers: Those who want to expand their skill set beyond application development and gain expertise in building and managing the underlying platforms that support software delivery.,DevOps Engineers: Those looking to deepen their understanding of platform engineering principles and tools to streamline development, deployment, and operations processes.,Platform Engineers: Those already working in platform engineering roles seeking to expand their knowledge, learn new tools and techniques, and stay current with industry best practices.,Beginners and newbies aspiring for a career in cloud and platform engineering.,Anyone interested in learning DevOps, platform engineering, and site reliability engineering both from architecture and implementation point of view.,Cloud Architects: Those responsible for designing and implementing cloud solutions at scale, and looking to integrate platform engineering principles into their overall architecture.,Cloud Engineers: Those seeking to enhance their knowledge of cloud-native technologies and their application in building scalable and resilient platforms.,System Administrators: Those transitioning to a more development-centric role and wanting to learn how to automate and manage infrastructure using code.,IT Professionals: Those aspiring to move into the growing field of platform engineering and gain a competitive edge in the job market.,Technical Leaders and Managers: Those responsible for overseeing software development and infrastructure teams and seeking to optimize their processes and improve delivery efficiency. Homepage |