Non Functional Testing For Llm, Chatbots And Ai Models - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Non Functional Testing For Llm, Chatbots And Ai Models (/Thread-Non-Functional-Testing-For-Llm-Chatbots-And-Ai-Models) |
Non Functional Testing For Llm, Chatbots And Ai Models - OneDDL - 10-04-2024 Free Download Non Functional Testing For Llm, Chatbots And Ai Models Published 9/2024 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 1.96 GB | Duration: 5h 6m Learn essential AI testing techniques to ensure reliable, ethical, and human-like performance of advanced AI systems What you'll learn Understand how AI is working Understand basic software testing Understand how AI is tested compared to traditional software Gain knowledge on testing for ethics Demo on testing Chat GPT with automated Tools Understand Adversial Testing techniques Understand how to test for a human like conversation Create a framework for testing bias, toxicity and hate with PerspectiveAPI Requirements basic experience with software testing basic coding experience ( but not needed) optional - GPT model 4 subscription (but not needed) desire to learn the hottest skill on the market desire to learn the hottest skill on the market Description Welcome to "Non Functional Testing for LLM, Chatbots and AI Models" your comprehensive guide to mastering the fundamentals of testing AI systems. Whether you're a developer, data scientist, or AI enthusiast, this course will provide you with the knowledge and skills needed to assess, improve, and ensure the reliability, performance, safety, and ethical integrity of AI technologies.What You Will Learn:Introduction to AI Testing: Understand the critical importance of testing AI systems, addressing both technical performance and ethical considerations. Learn about the potential impacts of AI failures and how responsible testing mitigates these risks.Special Focus on Foundation Models and LLMs: Dive deep into the unique challenges of testing large language models and foundational AI systems, which are driving innovation across multiple industries.AI System Evaluations: Learn how to design and implement effective testing frameworks for AI-based systems, utilizing both manual and automated tools to improve system performance and safety.Adversarial AI Testing: Understand how to evaluate the robustness of AI models through adversarial testing techniques, assessing how well AI systems resist manipulation and errors when exposed to malicious inputs.PerspectiveAPI for Ethical and Toxicity Testing: Learn how to integrate the PerspectiveAPI and other tools to test AI systems for ethical compliance and detect harmful or toxic outputs, ensuring AI systems uphold safety and ethical standards.Humanness in AI: Explore the concept of evaluating the "humanness" of AI responses. Learn how to test whether AI systems generate outputs that are human-like, contextually aware, and empathetic in their interactions.Ethical AI: Delve into the risks associated with AI and the ethical dimensions of AI development. Learn how to test AI systems for bias, fairness, and transparency, ensuring adherence to responsible AI practices.Testing ChatGPT and Chatbots Using APIs in MLOps: Learn to test and evaluate conversational models like ChatGPT through APIs, and understand how to integrate these tests into MLOps pipelines for continuous AI improvement.Case Studies: Review real-world examples of AI testing, learning from common pitfalls and best practices used in the field to ensure AI reliability and safety.Who This Course Is For:This course is designed for individuals seeking a comprehensive understanding of the techniques and practices required for testing AI systems. Whether you are starting a career in AI, enhancing your professional skills, or interested in the technical and ethical mechanisms behind AI system reliability, this course offers valuable insights.Enroll now to start mastering the critical skill of testing AI systems, ensuring that you are equipped to contribute to the development of safe, reliable, and ethically sound AI technologies! Overview Section 1: Introduction Lecture 1 Introduction Lecture 2 About your instructor Lecture 3 A word of introduction on Generative AI Lecture 4 History of AI Lecture 5 What you will learn in this material Section 2: Setup Environment Lecture 6 Install VS Code Lecture 7 Install NodeJS and NPM Lecture 8 Install Python Lecture 9 Install Python Dependencies - PIP Section 3: Introduction to Artificial Intelligence Lecture 10 What makes up AI Lecture 11 Where do LLMs fit into AI Lecture 12 Introduction to Natural Language Processing Lecture 13 Introduction to Machine Learning (ML) Lecture 14 Machine Learning - Supervised ML Lecture 15 Machine Learning - Unsupervised ML Lecture 16 Machine Learning - Reinforced ML Lecture 17 Neural Networks and Deep Learning Lecture 18 Importance of Training Data Lecture 19 What actually is GEN AI Section 4: Introduction to LLM Basic Testing Lecture 20 Types of Testing in Software Lecture 21 Testing Types for LLMs | Foundation Models Section 5: Automated Testing Framework with Postman and ChatGPT Lecture 22 What is a token in LLMs Lecture 23 Chat GPT-API - Create Subscription Lecture 24 Get an OPENAI API Key Lecture 25 Installing Postman and first API Test Lecture 26 API Collections and making Results Deterministic Lecture 27 Installing Newman and Running with the CLI Lecture 28 Demo - GitHub - Adding Tests in ML OPS Pipeline Section 6: Toxicity Testing Framework for LLMs Lecture 29 Perspective Service - Bias Detection Service Lecture 30 Get a Perspective API Key Lecture 31 Demo - VS Code - Call Perspective API Lecture 32 Demo - Python - Test AI Response against Perspective APIs Section 7: Adversial/Security Testing for LLMs Lecture 33 Adversial attacks for LLMS and Red Team Lecture 34 Prompt Injection Attack Lecture 35 FUZZ Testing Lecture 36 Denial of Service Attacks Lecture 37 Adversial Attack Examples Lecture 38 Poisoning attack Lecture 39 Privacy Leakage Testing Lecture 40 Evasion Attacks Section 8: Non - Functional Testing - Human in AI Lecture 41 What is non functional Testing for LLMs Lecture 42 Disclaimer on Non Functional Testing Lecture 43 Non functional Testing AI Models | LLMs - Ethical Alignment Lecture 44 Non functional Testing AI Models | LLMs - Explainability Lecture 45 Non functional Testing AI Models | LLMs - User Interaction Robustness Lecture 46 Non functional Testing AI Models | LLMs - Context Preservation Lecture 47 Non functional Testing AI Models | LLMs - Creativity and Novelty Section 9: Ethical Consideration for AI Lecture 48 Asimov's 3 Laws of Robots Lecture 49 DEMO - Why we need ethical and responsible AI Systems Lecture 50 AI and Biases Lecture 51 GEN AI and Privacy Lecture 52 GEN AI and Intellectual Property Lecture 53 Gen AI and Deep Fake Lecture 54 Hallucinations Lecture 55 OPENAI-CHAT GPT Moderation Service Lecture 56 Google Moderation Service Lecture 57 Spot a Fake - Demo Chat GPT Watermark on Dall E Citizen Developer,Software testers,Quality engineers,Social Engineers,Prompt Engineers,Product Managers,Engineering Directors Homepage Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live No Password - Links are Interchangeable |