Coursera Unsupervised Learning Recommenders Reinforcement Learning - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Coursera Unsupervised Learning Recommenders Reinforcement Learning (/Thread-Coursera-Unsupervised-Learning-Recommenders-Reinforcement-Learning) |
Coursera Unsupervised Learning Recommenders Reinforcement Learning - AD-TEAM - 10-18-2024 1.12 GB | 00:33:18 | mp4 | 1280X720 | 16:9 Genre:eLearning |Language:English
Files Included :
01 welcome (8.3 MB) 01 what-is-clustering (8.39 MB) 02 k-means-intuition (11.92 MB) 03 k-means-algorithm (18.5 MB) 04 optimization-objective (29.24 MB) 05 initializing-k-means (17.13 MB) 06 choosing-the-number-of-clusters (16.19 MB) 01 finding-unusual-events (25.09 MB) 02 gaussian-normal-distribution (20.08 MB) 03 anomaly-detection-algorithm (18.84 MB) 04 developing-and-evaluating-an-anomaly-detection-system (22.63 MB) 05 anomaly-detection-vs-supervised-learning (19.39 MB) 06 choosing-what-features-to-use (29.79 MB) 01 making-recommendations (20.25 MB) 02 using-per-item-features (21.62 MB) 03 collaborative-filtering-algorithm (29.03 MB) 04 binary-labels-favs-likes-and-clicks (19.08 MB) 01 mean-normalization (17.82 MB) 02 tensorflow-implementation-of-collaborative-filtering (34.31 MB) 03 finding-related-items (16.23 MB) 01 collaborative-filtering-vs-content-based-filtering (18.83 MB) 02 deep-learning-for-content-based-filtering (23.82 MB) 03 recommending-from-a-large-catalogue (17.02 MB) 04 ethical-use-of-recommender-systems (23.84 MB) 05 tensorflow-implementation-of-content-based-filtering (12 MB) 01 reducing-the-number-of-features-optional (27.05 MB) 02 pca-algorithm-optional (28.56 MB) 03 pca-in-code-optional (18.23 MB) 01 what-is-reinforcement-learning (31.4 MB) 02 mars-rover-example (12.47 MB) 03 the-return-in-reinforcement-learning (29.24 MB) 04 making-decisions-policies-in-reinforcement-learning (5.86 MB) 05 review-of-key-concepts (11.32 MB) 01 state-action-value-function-definition (19.22 MB) 02 state-action-value-function-example (14.74 MB) 03 bellman-equation (25.61 MB) 04 random-stochastic-environment-optional (19.5 MB) 01 example-of-continuous-state-space-applications (27.47 MB) 02 lunar-lander (10.34 MB) 03 learning-the-state-value-function (29.97 MB) 04 algorithm-refinement-improved-neural-network-architecture (7.66 MB) 05 algorithm-refinement-greedy-policy (25.22 MB) 06 algorithm-refinement-mini-batch-and-soft-updates-optional (25.19 MB) 07 the-state-of-reinforcement-learning (7.99 MB) 01 summary-and-thank-you (14.15 MB) 01 andrew-ng-and-chelsea-finn-on-ai-and-robotics (252.7 MB)
Screenshot
|