Machine Learning For Beginners - Sentiment Analyzer - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Machine Learning For Beginners - Sentiment Analyzer (/Thread-Machine-Learning-For-Beginners-Sentiment-Analyzer--669272) |
Machine Learning For Beginners - Sentiment Analyzer - OneDDL - 11-15-2024 Free Download Machine Learning For Beginners - Sentiment Analyzer Published 10/2024 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 1.99 GB | Duration: 3h 25m Sentiment Analyzer Project - TF & IDF What you'll learn Analyze and Interpret Sentiment: Extract and quantify emotions, sentiments, and opinions from text data using various sentiment analysis techniques. 2. Master Sentiment Analysis Tools: Learn to work with popular libraries (NLTK, spaCy, TensorFlow) and tools (TextBlob, VaderSentiment) for sentiment analysis. Develop NLP Skills: Understand Natural Language Processing (NLP) fundamentals, text preprocessing, and machine learning approaches for sentiment classification. Apply Sentiment Analysis in Real-World Scenarios: Confidently apply sentiment analysis techniques to real-world applications, such as customer feedback analysis Requirements Python programming knowledge is needed to pursue this course Description Sentiment Analysis: Extracting Insights from TextUnlock the power of emotions in text data with Sentiment Analysis. This comprehensive course teaches you to extract, analyze, and quantify sentiments, opinions, and emotions from various text sources.Key Topics:- Fundamentals of Natural Language Processing (NLP)- Sentiment Analysis techniques (rule-based, machine learning, deep learning)- Text preprocessing and feature extraction- Sentiment classification and visualization- Handling sarcasm, irony, and figurative language- Real-world applications (social media, customer feedback, product reviews)Learning Outcomes:- Analyze and interpret sentiments from text data- Master sentiment analysis tools and libraries (NLTK, spaCy, TensorFlow)- Develop NLP skills for text preprocessing and machine learning- Apply sentiment analysis in real-world scenariosTarget Audience:- Data scientists and analysts- NLP enthusiasts- Marketing and customer service professionals- Researchers and academicsChallenges:1. Handling sarcasm, irony, and figurative language2. Dealing with noisy or incomplete data3. Maintaining accuracy across domains4. Handling multilingual text data5. Integrating with existing systemsBy working on a Sentiment Analysis project, you'll gain hands-on experience with NLP, machine learning, and data analysis, while extracting valuable insights from text data.Prerequisites: Basic Python programming skillsJoin this course to unlock valuable insights from text data and drive informed decisions.Thank You and Keep Learning!! Overview Section 1: Introduction Lecture 1 Introduction - What this course is all about Section 2: Sentriment Analyzer Lecture 2 Understand the Project and code for sentiment analyzer Lecture 3 Understand the use of libraries - python Section 3: Understand the thing behind the scene Lecture 4 Understand the term frequency Lecture 5 Understand the DF and IDF Lecture 6 How TF and IDF works under the hood Lecture 7 How CountVectorizer works Lecture 8 Baye's Theorem and It's use in real life Lecture 9 Use Baye's theorem to identify spam mails Lecture 10 Baye's theorem and sentiment analysis Lecture 11 Significance of Training and Test data Lecture 12 fit_transform and transform methods Lecture 13 Save your model and use it in client code Lecture 14 Model with multiple features Lecture 15 Accuracy report Lecture 16 Run your project having multiple features Lecture 17 Important Docs and Artefacts This course is for the beginners in machine learning who want to learn basics without having prior knowledge of Maths Screenshot Homepage Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live No Password - Links are Interchangeable |