![]() |
|
Udemy (2025) Machine Learning Data Science for Beginners in Python - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Udemy (2025) Machine Learning Data Science for Beginners in Python (/Thread-Udemy-2025-Machine-Learning-Data-Science-for-Beginners-in-Python) |
Udemy (2025) Machine Learning Data Science for Beginners in Python - AD-TEAM - 11-18-2024 ![]() 12.55 GB | 00:16:53 | mp4 | 1280X720 | 16:9 Genre:eLearning |Language:English
Files Included :
1 -Course Introduction (9.19 MB) 2 -Machine Learning Introduction (31.98 MB) 3 -Install Anaconda and Python on Windows (54.45 MB) 4 -Install Anaconda in Linux (23.58 MB) 5 -Jupyter Notebook Introduction and Keyboard Shortcuts (102.94 MB) 1 -Logistic Regression Introduction (20.23 MB) 10 -Data Types Correction and Mapping (67.11 MB) 11 -One-Hot Encoding (61.51 MB) 12 -Train Test Split (54.19 MB) 13 -Model Building Training and Evaluation (76.12 MB) 14 -Feature Selection - Recursive Feature Elimination (140.86 MB) 15 -Accuracy, F1-Score, P, R, AUC ROC Curve Part 1 (43.43 MB) 16 -Accuracy, F1-Score, P, R, AUC ROC Curve Part 2 (51.75 MB) 17 -Accuracy, F1-Score, P, R, AUC ROC Curve Part 3 (57.37 MB) 18 -ROC Curve and AUC Part 1 (78.28 MB) 19 -ROC Curve and AUC Part 2 (51.29 MB) 2 -Sigmoid Function (11.59 MB) 20 -ROC Curve and AUC Part 3 (73.49 MB) 3 -Decision Boundary (10.72 MB) 4 -Titanic Dataset Introduction (56.23 MB) 5 -Dataset Loading (65.44 MB) 6 -EDA - Heatmap and Density Plot (49.25 MB) 7 -Missing Age Imputation Part 1 (52.04 MB) 8 -Missing Age Imputation Part 2 (90.37 MB) 9 -Imputation of Missing Embark Town (67.08 MB) 1 -SVM Introduction (25.08 MB) 10 -Linear SVM Model on Scaled Feature (56.58 MB) 11 -Polynomial, Sigmoid, RBF Kernels in SVM (37.36 MB) 2 -SVM Kernels (28.4 MB) 3 -Breast Cancer Dataset Introduction (63.93 MB) 4 -Dataset Loading (37.67 MB) 5 -Cancer Data Visualization Part 1 (56.64 MB) 6 -Cancer Data Visualization Part 2 (114.49 MB) 7 -Data Standardization (45.47 MB) 8 -Train Test Split (37.17 MB) 9 -Linear SVM Model Building and Training (76.09 MB) 1 -Cross Validation Regularization and Hyperparameter Optimization Introduction (28.35 MB) 10 -K-Fold and LeaveOneOut Cross Validation (66.9 MB) 11 -Grid Search Hypyerparameter Tuning (80.81 MB) 12 -Random Grid Search Hyperparameter Tuning (29.11 MB) 2 -ML Model Training Process (39.91 MB) 3 -Breast Cancer Dataset Loading (59.77 MB) 4 -Data Visualization (72.34 MB) 5 -Train Test Split (40.14 MB) 6 -Linear Regression and SVM Model Training (35.46 MB) 7 -Regularization Introduction (56.61 MB) 8 -Manual Hyperparameter Adjustment (74.24 MB) 9 -Types of Cross Validation (42.03 MB) 1 -KNN Introduction (26.04 MB) 2 -How KNN Works (43.66 MB) 3 -Wine Dataset Laoding (42.01 MB) 4 -Data Visualization (66.7 MB) 5 -Train Test Split and Standardization (45.81 MB) 6 -KNN Model Building and Training (18.98 MB) 7 -Hyperparameter Tuning (53.95 MB) 8 -Pros and Cons of KNN (10.78 MB) 1 -Decision Tree Introduction (34.27 MB) 10 -Diabetes Dataset Loading (66.59 MB) 11 -Decision Tree Regression (50.12 MB) 2 -How Decision Tree Works (43.97 MB) 3 -What is Attribute Selection Measures - ASM (42.75 MB) 4 -Dataset Loading (38.69 MB) 5 -Dataset Visualization (64.24 MB) 6 -Train Test Split (20.36 MB) 7 -Model Training and Evaluation (27.2 MB) 8 -Tree Visualization (36.16 MB) 9 -Hyperparameter Optimization (33.56 MB) 1 -Ensemble Learning Bagging and Boosting Introduction (37.24 MB) 2 -Random Forest Introduction (35.52 MB) 3 -Dataset Introduction (34.1 MB) 4 -Data Visualization (74.34 MB) 5 -Train Test Split and One-Hot Encoding (22.83 MB) 6 -Random Forest Classifier Training and Evaluation (59.5 MB) 7 -Data Loading for Random Forest Regression (66.64 MB) 8 -Random Forest Regression Model Building (19.57 MB) 9 -Hyperparameter Optimization (36.81 MB) 1 -Boosting Algorithms Introduction (55.49 MB) 10 -CatBoost Hyperparameter Optimization (76.8 MB) 2 -Heart-Disease Dataset Understanding (84.2 MB) 3 -Data Visualization Part 1 (73.81 MB) 4 -Train Test Split (30.59 MB) 5 -AdaBoost Model Training (46.49 MB) 6 -AdaBoost Hyperparameter Tuning (28.79 MB) 7 -XGBoost Introduction (29.7 MB) 8 -XGBoost Model Training and Hyperparameter Tuning (63.96 MB) 9 -CatBoost Model Training (39.91 MB) 1 -Introduction to Unsupervised Learning (34.82 MB) 10 -Clusters Visualization (78.18 MB) 11 -Decision Boundary Visualization (139.93 MB) 12 -Putting Everything Together (117.18 MB) 13 -Selecting Optimum Number of Clusters (55.51 MB) 14 -Clustering for Annual Income vs Spending Score (53.84 MB) 15 -3D Clustering Part 1 (36.82 MB) 16 -3D Clustering Part 2 (62.67 MB) 2 -Introduction to K-Means (43.81 MB) 3 -How to Choose Best Number of Clusters (50.48 MB) 4 -K-Means Clustering with Scikit-Learn (28.19 MB) 5 -Application of Unsupervised Learning (39.91 MB) 6 -Customers Data Loading (34.74 MB) 7 -Data Visualization (76.06 MB) 8 -K-Means Clustering Data Preparation (55.23 MB) 9 -K-Means Clustering for Age and Spending Score (40.35 MB) 1 -DBSCAN Introduction (46.82 MB) 2 -Generate Dataset (19.22 MB) 3 -DBSCAN Clustering (46.97 MB) 4 -Spectral Clustering (59.31 MB) 5 -Spectral Clustering Coding (30.05 MB) 1 -Hierarchical Clustering Introduction (23.42 MB) 2 -Important Terms in Hierarchical Clustering (26.96 MB) 3 -Stock Market Data Loading (47.29 MB) 4 -Hierarchical Clustering Coding (31.63 MB) 1 -Arithmatic Operations in Python (40.76 MB) 10 -10 Set (29.47 MB) 11 -Dictionary (31.28 MB) 12 -Conditional Statements - If Else (38.27 MB) 13 -While Loops (23.25 MB) 14 -For Loops (32.89 MB) 15 -Functions (43.03 MB) 16 -Working with Date and Time (61.33 MB) 17 -File Handling Read and Write (65.61 MB) 2 -Data Types in Python (28.27 MB) 3 -Variable Casting (21.86 MB) 4 -Strings Operation in Python (39.04 MB) 5 -String Slicing in Python (23.54 MB) 6 -String Formatting and Modification (29.84 MB) 7 -Boolean Variables and Evaluation (15.43 MB) 8 -List in Python (37.54 MB) 9 -Tuple in Python (27.74 MB) 1 -PCA Introduction (21.49 MB) 10 -Classification Comparison with and without PCA (51.27 MB) 2 -How PCA is Done (56.9 MB) 3 -MNIST Dataset Loading and Understanding (56.22 MB) 4 -PCA Applications (10.94 MB) 5 -PCA Coding (63.63 MB) 6 -PCA Compression Analysis (25.54 MB) 7 -Data Reconstruction (104.85 MB) 8 -Choosing Right Number of the Principle Components (56.42 MB) 9 -Data Reconstruction with 95% Information (34.11 MB) 1 -What is Neuron (20.86 MB) 10 -Customer Churn Dataset Loading (25.98 MB) 11 -Data Visualization Part 1 (50.23 MB) 12 -Data Visualization Part 2 (107.27 MB) 13 -Data Preprocessing (36.39 MB) 14 -Import Neural Networks APIs (37.02 MB) 15 -How to Get Input Shape and Class Weights (21.17 MB) 16 -Neural Network Model Building (60.89 MB) 17 -Model Summary Explanation (48.79 MB) 18 -Model Training (56.3 MB) 19 -Model Evaluation (16.1 MB) 2 -Multi-Layer Perceptron (55.15 MB) 20 -Model Save and Load (23.64 MB) 21 -Prediction on Real-Life Data (50.9 MB) 3 -Shallow vs Deep Neural Networks (13.87 MB) 4 -Activation Function (40.35 MB) 5 -What is Back Propagation (79.42 MB) 6 -Optimizers in Deep Learning (52.04 MB) 7 -Steps to Build Neural Network (64.09 MB) 8 -Install TensorfFlow in Windows (67.97 MB) 9 -Install TensorFlow in Linux (69.46 MB) 1 -Introduction to NLP (22.55 MB) 10 -Pair Plot (41.94 MB) 11 -Train Test Split (8.74 MB) 12 -TF-IDF Vectorization (34.68 MB) 13 -Model Evaluation and Prediction on Real Data (22.25 MB) 14 -Model Load and Store (22.06 MB) 2 -What are Key NLP Techniques (39.55 MB) 3 -Overview of NLP Tools (64.52 MB) 4 -Common Challenges in NLP (19.14 MB) 5 -Bag of Words - The Simples Word Embedding Technique (27.29 MB) 6 -Term Frequency - Inverse Document Frequency (TF-IDF) (20.01 MB) 7 -Load Spam Dataset (18.56 MB) 8 -Text Preprocessing (45.87 MB) 9 -Feature Engineering (33.71 MB) 1 -Numpy Introduction - Create Numpy Array (35.9 MB) 10 -Concatenation and Sorting (36.47 MB) 2 -Array Indexing and Slicing (48.72 MB) 3 -Numpy Data Types (52.86 MB) 4 -np nan and np inf (24.89 MB) 5 -Statistical Operations (18.84 MB) 6 -Shape(), Reshape(), Ravel(), Flatten() (20.53 MB) 7 -arange(), linspace(), range(), random(), zeros(), and ones() (55.01 MB) 8 -Where (28.54 MB) 9 -Numpy Array Read and Write (50.46 MB) 1 -Pandas Series Introduction Part 1 (33.66 MB) 10 -Arithmetic Operations (22.96 MB) 11 -NULL Values Handling (42.24 MB) 12 -DataFrame Data Filtering Part 1 (63.8 MB) 13 -DataFrame Data Filtering Part 2 (47.11 MB) 14 -14 Handling Unique and Duplicated Values (51.21 MB) 15 -Retrive Rows by Index Label (46.05 MB) 16 -Replace Cell Values (35.78 MB) 17 -Rename, Delete Index and Columns (31.11 MB) 18 -Lambda Apply (60.55 MB) 19 -Pandas Groupby (67.19 MB) 2 -Pandas Series Introduction Part 2 (22.38 MB) 20 -Groupby Multiple Columns (55.8 MB) 21 -Merging, Joining, and Concatenation Part 1 (16.45 MB) 22 -Concatenation (28.93 MB) 23 -Merge and Join (66.77 MB) 24 -Working with Datetime (57.38 MB) 25 -Read Stock Data from YAHOO Finance (28.41 MB) 3 -Pandas Series Read From File (30.77 MB) 4 -Apply Pythons Built in Functions to Series (48.34 MB) 5 -apply() for Pandas Series (33.21 MB) 6 -Pandas DataFrame Creation from Scratch (31.23 MB) 7 -Read Files as DataFrame (56.15 MB) 8 -Columns Manipulation Part 1 (45.44 MB) 9 -Columns Manipulation Part 2 (47.52 MB) 1 -Matplotlib Introduction (31.99 MB) 10 -Subplot Part 2 (70.94 MB) 11 -Subplots (65.68 MB) 12 -Creating a Zoomed Sub-Figure of a Figure (59.32 MB) 13 -xlim and ylim, legend, grid, xticks, yticks (42.7 MB) 14 -Pie Chart and Figure Save (58.17 MB) 2 -Matplotlib Line Plot Part 1 (51.84 MB) 3 -IMDB Movie Revenue Line Plot Part 1 (29.57 MB) 4 -IMDB Movie Revenue Line Plot Part 2 (23.14 MB) 5 -Line Plot Rank vs Runtime Votes Metascore (23.39 MB) 6 -Line Styling and Putting Labels (40.98 MB) 7 -Scatter, Bar, and Histogram Plot Part 1 (53.31 MB) 8 -Scatter, Bar, and Histogram Plot Part 2 (66.37 MB) 9 -Subplot Part 1 (58.66 MB) 1 -Introduction (39.41 MB) 10 -cat plot (27.78 MB) 11 -Box Plot (10.55 MB) 12 -Boxen Plot (20.7 MB) 13 -Violin Plot (29.95 MB) 14 -Bar Plot (17.03 MB) 15 -Point Plot (9.29 MB) 16 -Joint Plot (11.58 MB) 17 -Pair Plot (24.11 MB) 18 -Regression Plot (13 MB) 19 -Controlling Ploted Figure Aesthetics (31.74 MB) 2 -Scatter Plot (22.14 MB) 3 -Hue, Style and Size Part1 (10.8 MB) 4 -Hue, Style and Size Part2 (26.82 MB) 5 -Line Plot Part 1 (17.45 MB) 6 -Line Plot Part 2 (50.77 MB) 7 -Line Plot Part 3 (42.31 MB) 8 -Subplots (31.67 MB) 9 -sns lineplot() and sns scatterplot() (28.01 MB) 1 -IRIS Dataset Introduction (26.62 MB) 10 -Hexbin Plot (41.18 MB) 11 -Pie Chart (81.36 MB) 12 -Scatter Matrix and Subplots (62.6 MB) 2 -Load IRIS Dataset (36.55 MB) 3 -Line Plot (59 MB) 4 -Secondary Axis (66.78 MB) 5 -Bar and Barh Plot (51.79 MB) 6 -Stacked Bar Plot (50.93 MB) 7 -Histogram (78.36 MB) 8 -Box Plot (44.29 MB) 9 -Area and Scatter Plot (74.67 MB) 1 -Introduction to Plotly and Cufflinks (31.09 MB) 2 -Plotly Line Plot (69.66 MB) 3 -Scatter Plot (27.96 MB) 4 -Stacked Bar Plot (81.62 MB) 5 -Box and Area Plot (30.55 MB) 6 -3D Plot (63.22 MB) 7 -Hist Plot, Bubble Plot and Heatmap (78.68 MB) 1 -Linear Regression Introduction (33.36 MB) 10 -Exploratory Data Analysis- Pair Plot (81.09 MB) 11 -Exploratory Data Analysis- Hist Plot (33.54 MB) 12 -Exploratory Data Analysis- Heatmap (46.33 MB) 13 -Train Test Split and Model Training (44.88 MB) 14 -How to Evaluate the Regression Model Performance (62.15 MB) 15 -Plot True House Price vs Predicted Price (44.41 MB) 16 -Plotting Learning Curves Part 1 (37.33 MB) 17 -Plotting Learning Curves Part 2 (55.97 MB) 18 -Machine Learning Model Interpretability- Residuals Plot (35.28 MB) 19 -Machine Learning Model Interpretability- Prediction Error Plot (23.3 MB) 2 -Regression Examples (33.82 MB) 3 -Types of Linear Regression (42.14 MB) 4 -Assessing the performance of the model (37.53 MB) 5 -Bias-Variance tradeoff (52.56 MB) 6 -What is sklearn and train-test-split (39.68 MB) 7 -Python Package Upgrade and Import (36.03 MB) 8 -Load Boston Housing Dataset (32.73 MB) 9 -Dataset Analysis (52.5 MB)] Screenshot ![]()
FileAxa
RapidGator TurboBit |