Softwarez.Info - Software's World!
Econometrics and Statistics for Business in R & Python - Printable Version

+- Softwarez.Info - Software's World! (https://softwarez.info)
+-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone)
+--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials)
+--- Thread: Econometrics and Statistics for Business in R & Python (/Thread-Econometrics-and-Statistics-for-Business-in-R-Python)



Econometrics and Statistics for Business in R & Python - AD-TEAM - 01-20-2025

[Image: 537368816_que-es-udemy-analisis-opiniones.jpg]
4.79 GB | 11min 23s | mp4 | 1280X720 | 16:9
Genre:eLearning |Language:English

Files Included :
1 Course introduction and structure.mp4 (53.4 MB)
2 Course content.mp4 (6.66 MB)
3 Installing R and RStudio.mp4 (10.52 MB)
4 Installing Python and Spyder.mp4 (21.18 MB)
5 Diogo's Introduction and Background.mp4 (28.02 MB)
6 Future of this course and reviews.mp4 (32.58 MB)
1 Difference-in-differences use cases.mp4 (13.22 MB)
2 Difference-in-Differences framework.mp4 (11.47 MB)
3 Modelling Difference-in-differences.mp4 (8.34 MB)
4 Difference-in-differences assumptions.mp4 (6.2 MB)
5 Difference-in-differences step by step guide.mp4 (7.18 MB)
6 Linear Regression crash course.mp4 (9.4 MB)
7 Linear Regression output summary.mp4 (15.49 MB)
8 Dummy variable trap.mp4 (5.65 MB)
2 Intro to RStudio and data loading.mp4 (23.98 MB)
3 Dealing with NAs part 1.mp4 (36.57 MB)
4 Dealing with NAs part 2.mp4 (9.73 MB)
5 First linear regression model.mp4 (36.78 MB)
6 Second linear regression model and dummy variable trap.mp4 (25.09 MB)
7 Last linear regression.mp4 (9.4 MB)
8 Presenting results.mp4 (41.65 MB)
10 Will you help me.mp4 (13.71 MB)
2 Python - Setup.mp4 (60.8 MB)
3 Python - Data Analysis and Processing.mp4 (78.53 MB)
4 Google Sheets - How DiD Works.mp4 (94.76 MB)
5 Python - First Linear Regression Model.mp4 (106.41 MB)
6 Python - Visualizating the Model Output Part 1.mp4 (103.95 MB)
7 Python - Visualizating the Model Output Part 2.mp4 (65.57 MB)
8 Python - Second Regression Model.mp4 (86.86 MB)
9 Python - Third Regression Model.mp4 (82.19 MB)
1 Introducing second case study.mp4 (6.39 MB)
2 Logistic Regression crash course.mp4 (8.3 MB)
3 Placebo test mechanics.mp4 (4.95 MB)
2 Loading data and inspecting it.mp4 (10.42 MB)
3 Defining variables.mp4 (19.79 MB)
4 First Logistic Regression in R.mp4 (23.05 MB)
5 Second Logistic Regression Model.mp4 (8.59 MB)
6 Visualizing results.mp4 (20.94 MB)
7 Preparing variables and dataset for placebo experiment.mp4 (18.44 MB)
8 Logistic Regression and Placebo experiment.mp4 (30.15 MB)
1 Python - Setup.mp4 (77.94 MB)
2 Python - Data Processing.mp4 (48.02 MB)
3 Python - First Logistic Regression Model.mp4 (146.66 MB)
4 Python - Visualizating the Model Output Part 1.mp4 (100.21 MB)
5 Python - Visualizating the Model Output Part 2.mp4 (57.28 MB)
6 Python - Second Model.mp4 (72.87 MB)
7 Python - Placebo Experiment.mp4 (148.55 MB)
8 Python - Visualizing the Placebo Experiment.mp4 (52.35 MB)
1 Introducing Causal Impact.mp4 (12.04 MB)
2 Value added of Causal Impact.mp4 (11.46 MB)
3 Step by step application guide.mp4 (3.41 MB)
4 Case study briefing.mp4 (6.11 MB)
10 Interpreting Causal Impact results.mp4 (24.4 MB)
3 Loading Facebook's stock price.mp4 (41.12 MB)
4 Loading more stock prices.mp4 (8.07 MB)
5 Plotting stock prices.mp4 (21.71 MB)
6 Correlation Matrix.mp4 (20.56 MB)
7 Choosing control group.mp4 (27.23 MB)
8 Preparing dataset to run Causal Impact.mp4 (19.6 MB)
9 Calculating the impact.mp4 (32.8 MB)
2 Python - Google Causal Impact Setup.mp4 (92.15 MB)
3 Python - Loading Financial Data.mp4 (74.17 MB)
4 Python - Data Processing.mp4 (54.38 MB)
5 Stationarity.mp4 (6.98 MB)
6 Python - Stationarity.mp4 (112.56 MB)
7 Python - Correlation Matrix and Heatmap.mp4 (96.79 MB)
8 Python - Google Causal Impact.mp4 (148.18 MB)
1 Granger Causality use cases.mp4 (2.93 MB)
2 Problem statement.mp4 (6.56 MB)
3 Correlation is not causality!.mp4 (5.63 MB)
4 Granger Causality framework.mp4 (7.33 MB)
5 Granger Causality step by step guide and case study briefing.mp4 (7.39 MB)
2 Loading and inspecting data.mp4 (11.35 MB)
3 Plotting time series.mp4 (9.93 MB)
4 Stationarity check.mp4 (18.05 MB)
5 Applying Granger Causality.mp4 (43.33 MB)
6 Optimal number of lags and for loop part 1.mp4 (30.6 MB)
7 Optimal number of lags and for loop part 2.mp4 (14.93 MB)
2 Python - Setup.mp4 (91.77 MB)
3 Python - Data Processing and Visualization.mp4 (38.8 MB)
4 Python - Stationarity.mp4 (38.39 MB)
5 Python - Granger Causality Setup.mp4 (41.3 MB)
6 Python - Granger Causality.mp4 (91.07 MB)
7 Python - Extracting Granger Causality Results.mp4 (60.17 MB)
8 Python - Visualizing Granger Causality Results.mp4 (98.44 MB)
1 Propensity Score Matching use cases.mp4 (4.48 MB)
2 Problem statement.mp4 (3.77 MB)
3 Propensity Score Matching framework.mp4 (6.27 MB)
4 Unconfoundness and Common Support Region.mp4 (13.53 MB)
5 Propensity Score Matching step by step guide.mp4 (3.48 MB)
6 T-test crash course.mp4 (5.36 MB)
7 Case study briefing.mp4 (1.71 MB)
10 Propensity Score Matching Summary.mp4 (15.18 MB)
11 T-Test on the matched groups.mp4 (18.69 MB)
12 Impact assessment.mp4 (12.88 MB)
13 Robustness check.mp4 (14.67 MB)
2 Loading data.mp4 (9.06 MB)
3 Average income in 78 per group.mp4 (30.35 MB)
4 Summary of Confounders' averages.mp4 (21.01 MB)
5 T-Test function.mp4 (48.36 MB)
6 Logistic Regression.mp4 (20.09 MB)
7 Creating dataframe for common support region.mp4 (23.18 MB)
8 Common Support Region.mp4 (30.36 MB)
9 Propensity Score Matching.mp4 (36.47 MB)
2 Python - Setup.mp4 (92.89 MB)
3 Python - Descriptive Statistics.mp4 (93.69 MB)
4 Python - T-Tests.mp4 (131.15 MB)
5 Python - Propensity Scores.mp4 (61.43 MB)
6 Python - Common Support Region.mp4 (169.08 MB)
7 Python - Propensity Score Matching with Uber Causal ML.mp4 (125.4 MB)
8 Python - Uber CausalML Results.mp4 (141.16 MB)
1 CHAID use cases.mp4 (11.18 MB)
2 Problem statement.mp4 (8.97 MB)
3 CHAID Framework.mp4 (7.73 MB)
4 How CHAID works.mp4 (6.03 MB)
5 Confusion Matrix.mp4 (9.81 MB)
6 CHAID step by step guide.mp4 (3.29 MB)
7 Case study briefing.mp4 (1.29 MB)
10 Driver Importance.mp4 (15.39 MB)
11 Transforming numeric into factors part 1.mp4 (33.06 MB)
12 Second CHAID model.mp4 (47.55 MB)
13 Density plot for numerical variables.mp4 (31.05 MB)
14 Transforming numeric into factors part 2.mp4 (19.89 MB)
15 Transforming numeric into factors part 3.mp4 (13.46 MB)
16 Third CHAID model.mp4 (40.42 MB)
2 Loading data and analysis.mp4 (8.72 MB)
3 Data structure and summary statistics.mp4 (39.33 MB)
4 Forming factor only dataset.mp4 (5.2 MB)
6 First CHAID model.mp4 (18.4 MB)
7 Plotting CHAID.mp4 (16.39 MB)
8 Chi-square test.mp4 (13.23 MB)
9 Accuracy, sensitivity and specificity.mp4 (14.26 MB)]
Screenshot
[Image: bZnpXmXT_o.jpg]

RapidGator

[To see links please register or login]

TurboBit

[To see links please register or login]