![]() |
Ai & Llm Engineering Mastery - Genai, Rag Complete Guide - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Ai & Llm Engineering Mastery - Genai, Rag Complete Guide (/Thread-Ai-Llm-Engineering-Mastery-Genai-Rag-Complete-Guide) |
Ai & Llm Engineering Mastery - Genai, Rag Complete Guide - OneDDL - 02-26-2025 ![]() Free Download Ai & Llm Engineering Mastery - Genai, Rag Complete Guide Published: 2/2025 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 16.21 GB | Duration: 28h 11m From Fundamentals to Advanced AI Engineering - Fine-Tuning, RAG, AI Agents, Vector Databases & Real-World Projects What you'll learn Master the architecture and workflow of a RAG system for processing PDFs and multimodal data. Master the Fundamentals of AI, Machine Learning and Deep Learning (Basics) Master LangChain tools, frameworks, and workflows, including embedding techniques and retrievers. Fine-tuning models with OpenAI, LoRA, and other techniques to customize AI responses. Develop AI-driven applications with advanced RAG techniques, multimodal search, and AI agents for real-world use cases. Requirements Basics of Programming - Python Fundamentals INCLUDED Description Become an AI Engineer and master Large Language Models (LLMs), Generative AI, Retrieval-Augmented Generation (RAG), AI agents, and vector databases in this comprehensive hands-on course. Whether a beginner or an experienced developer, this course will take you from zero to hero in building real-world AI-powered applications.This course combines deep theoretical insights with hands-on projects, ensuring you understand AI model architectures, development and optimization strategies, and practical applications.What You'll Learn ![]() Overview Section 1: Introduction Lecture 1 Introduction Lecture 2 DEMO - What You'll Build in this Course Lecture 3 Course Structure Lecture 4 How To Get The Most from This Course Section 2: Development Environment Setup Lecture 5 Development Environment Setup - Overview Lecture 6 Install Python on Windows - for WINDOWS USERS Lecture 7 Install Python on MAC - for MAC USERS Lecture 8 Download Visual Studio Code Lecture 9 Install the Python Extension Pack for VS Code Lecture 10 Running First Python Program in VS Code Section 3: Do You Know Python? Lecture 11 Python Deep Dive - Introduction and Overview Section 4: OPTIONAL - Python Deep Dive - Master Python Fundamentals Lecture 12 What is Python and Where It's Used? Lecture 13 Python Compilation & Interpretation Process Lecture 14 Download Python Fundamentals Code Lecture 15 Declaring Variables in Python Lecture 16 Data Types Lecture 17 Python f-Strings Lecture 18 Numbers - Integers and Floats Lecture 19 Introduction to Lists - Accessing and Modifying Them Lecture 20 f-Strings & Individual Values from a List Lecture 21 Sorting a List and Getting a List Length Lecture 22 Lists and Loops - Looping through a List Lecture 23 Making a List of Numbers with Loops and the Range Function Lecture 24 Statistics Functions for Numbers Lecture 25 Generate Even Numbers with the List and Range Lecture 26 Important: Code Organization Note Lecture 27 List Comprehension Lecture 28 Tuples Lecture 29 Branching - If Statements and Booleans Lecture 30 The Elif and the in Keywords Lecture 31 Hands-on - Using AND and OR Logical Operators Lecture 32 AND OR Logical Operators Lecture 33 Checking for Inequalities Lecture 34 Hands-on - Inner If-Statements Lecture 35 Data Structures - Dictionaries - Introduction and Declaring and Accessing Values Lecture 36 Modifying a Dictionary Lecture 37 Iterating Through a Dictionary Lecture 38 Nested Dictionaries and Looping Through Them Lecture 39 Looping through a Dictionary with a List Inside Lecture 40 User Input and While Loops - User Input - Introduction Lecture 41 Hands-on - Odd or Even Number Lecture 42 While Loops & Simple Quit Program Lecture 43 Hands-on - Quiz Game Lecture 44 Removing all Instances of Specific Values from a List Lecture 45 Hands-on Dream Travel Itinerary Program - Filling a Dictionary with User Input Lecture 46 Functions - Introduction Lecture 47 Passing Information to a Function (parameters) Lecture 48 Positional and Named Arguments Lecture 49 Default Values - Parameters Lecture 50 Return Values from a Function Lecture 51 Hands-on - Returning an Integer & Intro do DocString Lecture 52 Functions - Passing a List as Argument Lecture 53 Passing an Arbitrary Number of Arguments to a Function Lecture 54 Introduction to Modules - Importing Specific functions from a Module Lecture 55 Using the "as" as an Alias Lecture 56 Classes and OOP - Object Oriented Programming - The "init and "str" methods Lecture 57 Adding More Methods to the Class Lecture 58 Setting a Default Value for an Attribute Lecture 59 Modifying Class Attribute - directly and with Methods Lecture 60 Inheritance - Create an Ebook - Child Class Lecture 61 Overriding Methods Lecture 62 Creating and Importing from a Module Lecture 63 The Object Class - Overview Lecture 64 The Python Standard Library Lecture 65 Random Module - Random Fruit Hands-on Lecture 66 Hands-on - Random Fruit with Choice Module Method Lecture 67 Using Datetime Module Lecture 68 Writing & Reading Files - Do Useful Tasks with Python - Do amazing things Lecture 69 The Path Class & Reading a Text File Lecture 70 Resolving Path - Reading From a Subdirectory with Path Lecture 71 Path Properties Overview Lecture 72 Writing to Text file with Path Lecture 73 Read and Write to File Using the "with" Keyword Lecture 74 Handling Exceptions Lecture 75 The "FileNotFound" and "IndexError" Exceptions Types Lecture 76 Custom Exception Creation and handling Lecture 77 JSON - Reading and Writing to a JSON File Lecture 78 Hands-on - Writing and Reading - Countries to JSON file Lecture 79 Hands-on - File Organizer Lecture 80 Python Virtual Environment and PIP Lecture 81 Setting up Virtual Environment and Installing a Package Lecture 82 Hands-on Watermarker Python Tool Lecture 83 Building an Image Watermarker in Python - Part 1 Lecture 84 Generating the Watermarked Images Lecture 85 Reading CSV File - Introduction Lecture 86 Getting the CSV header Position Lecture 87 Reading Data from a CSV Column Lecture 88 Plotting a Graph with CSV Data Section 5: Deep and Machine Learning Deep Dive Lecture 89 Deep and Machine Learning Deep Dive - Overview and Breakdown Lecture 90 Deep Learning Key Aspects Lecture 91 Deep Neural Network Dissection - Full Dive with Analogies Lecture 92 The Single Neuron Computation - Deep Dive Lecture 93 Wights - Deep Dive Lecture 94 Activation Functions - Deep Dive with Analogies Lecture 95 Deep Learning Summary Lecture 96 Machine Learning Introduction - Machine Learning vs. Deep Learning Lecture 97 Learning Types - Education System Analogy Lecture 98 Comparative Capabilities Deep Learning and Machine Learning and AI - Summary Section 6: Generative AI (GenAI) - Deep Dive Lecture 99 GenAI Introduction and Architecture Overview Lecture 100 GenAI Key Technologies - Limitations and challenges Lecture 101 GenAI Key Components Overview and Summary Section 7: LLMs (Large Language Models) - Fundamentals - A Deep Dive Lecture 102 LLMs - Overview Lecture 103 The Transformer Architecture - Fundamentals Lecture 104 The Self-Attention Mechanism - Analogy Lecture 105 The Transformers Library - Deep Dive Lecture 106 HANDS-ON - Create a Simple LLM from the Transformers Library - Simple Lecture 107 HANDS-ON - Hands-on Enhanced Transformers LLM Lecture 108 Open-source vs. Closed-source Models - Overview Section 8: OpenAI Models and Setup Lecture 109 Setup OpenAI Account and API Key Lecture 110 Using APIs Effectively in AI Projects Lecture 111 HANDS-ON - Making our First Call to OpenAI Model Section 9: Prompt Engineering - Communicating with LLMs - Deep Dive Lecture 112 Prompt Engineering Introduction Lecture 113 Prompt Engineering and Types - Why it Matters Lecture 114 HANDS-ON - Simple Prompting Example Lecture 115 Advanced Prompting Techniques and Challenges Lecture 116 HANDS-ON - Few-shots Prompting Lecture 117 HANDS-ON - Zero-shot Prompting Lecture 118 HANDS-ON -Chain-of-Thoughts Prompting Lecture 119 HANDS-ON - Instructional Prompting Lecture 120 HANDS-ON - Role-Playing and Open-ended Prompting Lecture 121 Temperature and Top-p Sampling Lecture 122 HANDS-ON - Prompt Techniques Combination and Streaming Lecture 123 Prompt Engineering Summary and Takeaways Section 10: Ollama & Open-Source Models - Complete Guide Lecture 124 Ollama - Introduction Lecture 125 Download Source Code and Resources Lecture 126 Ollama Deep Dive - Ollama Overview - What is Ollama and Advantages Lecture 127 Ollama Key Features and Use Cases Lecture 128 System Requirements & Ollama Setup - Overview Lecture 129 HANDS-ON - Download and Setup Ollama and Llama3.2 Model Lecture 130 Ollama Models Page - Overview Lecture 131 Ollama Model Parameters Deep Dive Lecture 132 Understanding Parameters and Disk Size and Computational Resources Needed Lecture 133 Ollama CLI Commands -Pull and Testing a Model Lecture 134 Pull in the Llava Multimodal Model and Caption an Image Lecture 135 Summarization and Sentiment Analysis & Customizing Our Model Lecture 136 Ollama REST API - Generate and Chat Endpoints Lecture 137 Ollama REST API - Request JSON Mode Lecture 138 Ollama Models Support Different Tasks - Summary Lecture 139 Different Ways to Interact with Ollama Models Lecture 140 Ollama Model Running Under Msty App Lecture 141 Ollama Python SDK for Building LLM Local Applications Lecture 142 HANDS-ON - Interact with Llama3 in Python Using Ollama REST API Lecture 143 Ollama Python Library - Chatting with a Model Lecture 144 Chat Example with Streaming Lecture 145 Using Ollama Show Function Lecture 146 Create a Custom Model in Code Section 11: Context & Memory Management for LLMs - Deep Dive Lecture 147 HANDS-ON - Context and Memory Management Overview Lecture 148 What is Context and Memory Management - Deep Dive Lecture 149 HANDS-ON - Adding Memory and Context to Chatbox Lecture 150 Summary Section 12: Logging in LLM Applications - Deep Dive Lecture 151 Logging - Introduction - What and the Why Lecture 152 Logging in LLM Applications and Logging Life Cycle Lecture 153 HANDS-ON - Chatbot with Logging Lecture 154 Summary Section 13: RAG - Retrieval-Augmented Generation - Deep Dive Lecture 155 RAG Introduction - What is it? Lecture 156 RAG Key Components - The RAG Triad Lecture 157 RAG vs. Pure GenAI Models Lecture 158 RAG Deep Dive - Full Diagram Walkthrough Lecture 159 RAG Benefits and Practical Applications Lecture 160 RAG Challenges Lecture 161 RAG Fundamentals - Takeaways - Summary Section 14: Vector Databases and Embeddings - Deep Dive Lecture 162 Vector Databases and Embeddings for RAG Workflows - Introduction Lecture 163 Download Source code Lecture 164 Introduction to Vector Databases - Full Overview Lecture 165 Why Vector Databases Lecture 166 Vector Databases - Benefits and Advantages Lecture 167 Traditional vs. Vector Databases - Limitations and challenges Lecture 168 Vector Databases & Embeddings - Full Overview Lecture 169 Embeddings vs. Vectors - Differences Lecture 170 Vector Databases - How They Work and Advantages Lecture 171 Vector Databases Use Cases Lecture 172 Vector and Traditional Databases - Summary Lecture 173 The Top 5 Vector Databases - Overview Lecture 174 Building Vector Databases - Dev Environment Setup Lecture 175 Setup VS-Code, Python and OpenAI API Key Lecture 176 Chroma Database workflow Lecture 177 Creating a ChromaDB and Adding Documents and Querying Lecture 178 Looping Through the Results & Showing Similarity Search Results Lecture 179 Chroma Default Embedding Function Lecture 180 Chroma Vector Database - Persisting Data and Saving Lecture 181 Creating an OpenAI Embeddings - Raw without Chroma Lecture 182 Using OpenAIs Embedding API to Create Embedding in ChromaDB Lecture 183 Vector Databases Metrics and Data Structures Lecture 184 Summary Lecture 185 Vector Similarity Deep Dive - Cosine Similarity Lecture 186 Eucledian Distance - L2 Norm Lecture 187 Dot Product Lecture 188 Summary Lecture 189 Vector Databases and LLM - Deep Dive Lecture 190 Loading all Documents Lecture 191 Generating Embeddings from Documents and Insert to Vector Database Lecture 192 Getting the Relevant Chunks when Given a Query Lecture 193 Using OpenAI LLM to Generate Response - Full Workflow Lecture 194 Summary Section 15: HANDS-ON - RAG PDF Workflow - Build RAG Workflows Deep Dive Lecture 195 Building a RAG Pipeline - Overview Lecture 196 First RAG Workflow Architectural Diagram Lecture 197 Setting up the Embedding Model Class Lecture 198 HANDS-ON - Building and Showcasing the RAG Workflow Lecture 199 HANDS-ON - RAG Workflow with UI - Streamlit Lecture 200 First RAG Pipeline Summary Section 16: HANDS-ON - Build a PDF RAG System with Text Chunking Lecture 201 PDF RAG Workflow - Architecture Overview Lecture 202 PDF and Chunk Processing and Chunk Overlap - Deep Dive Lecture 203 Setting up the SimpleRAGSystem Class and Methods Lecture 204 Testing the PDF RAG System Lecture 205 Simple PDF RAG Workflow - Summary Section 17: LLM Tools and Frameworks - LangChain Deep Dive Lecture 206 LLM Frameworks Introduction - LangChain Fundamentals Lecture 207 What is LangChain and and Main Components Lecture 208 LangChain Setup and ChatModel Lecture 209 Hands-on - LangChain ChatPromptTemplates Lecture 210 Indexes, Retrievers and Data Preparation - Overview Lecture 211 Hands-On - LangChain TextLoaders Lecture 212 Hands-on: Text Splitting and Cleaning Lecture 213 Hands-on: Embeddings and Retriever with FAISS VectorStore Lecture 214 LangChain TextSplitter - Deep Dive Lecture 215 LangChain DirectoryLoader Lecture 216 LangChain PDFLoader Lecture 217 Hands-on: LangChain Chains Lecture 218 Hands-on - Simple RAG System with Chat and LangChain Chains Lecture 219 Hands-on: Full RAG System QA Bot Using LangChain Section 18: HANDS-ON - Building LLM Applications with LangChain Lecture 220 LLM Application - News Summarizer - Architectural Overview Lecture 221 News Summarizer - Full Implementation Lecture 222 LLM Application - Youtube Video Summarizer - Architectural Overview Lecture 223 Youtube Video Summarizer & Q&A Dependency Setup Lecture 224 Youtube Video Summarizer Class Setup and Walkthrough Lecture 225 Youtube Video Summarizer Q&A - Testing the Workflow Lecture 226 LLM Application - Voice Assistant RAG System - Architectural Overview Lecture 227 Voice Assistant RAG System - Demo Lecture 228 Voice Assistant RAG System - Walkthrough and Demo Section 19: Advanced RAG Techniques - Naive vs Advanced RAG Techniques Lecture 229 RAG and the RAG Triad - Quick Overview and Recap Lecture 230 What is RAG and Naive RAG Overview and Pitfalls - Motivation Lecture 231 Deep Dive into Each Naive RAG Drawbacks Lecture 232 Advanced RAG Technique - Query Expansion with Multiple Queries - Overview Lecture 233 Hands-on - Query Expansion with Multiple Queries - Generate Multiple Queries Lecture 234 Query Expansion Workflow Architectural Diagram Lecture 235 Hands-on- Setting up the Workflow and Code Walkthrough Lecture 236 Query Expansion Full RAG Workflow Lecture 237 Query Expansion with Multiple Queries Downsides & Summary Lecture 238 Re-Ranking & Cross-encoder and Bi-encoders - Overview Lecture 239 Reranking Technique RAG System Workflow Architecture Lecture 240 Cohere Rerank API Key Setup Lecture 241 Hands-on - Re-ranking Implementation with Cohere - Full Implementation Lecture 242 Re-ranking Summary Section 20: Multimodal RAG - Deep Dive Lecture 243 Multimodal RAG Source Code Lecture 244 RAG & Multimodal RAG - Recap and Overview Lecture 245 RAG Benefits and Practical Applications Lecture 246 Multimodal RAG - Overview & Motivation and Benefits - How it Works Lecture 247 How Search Is Integrated into a Multimodal RAG System - Full Workflow Lecture 248 Why Multimodal Search is so Powerful Lecture 249 Visual Explanation Why Multimodal Search is so Powerful Lecture 250 HANDS-on: Multimodal Search System setup - Create Embeddings from Images Lecture 251 Finish the Multimodal Search System Lecture 252 HANDS-ON - Multimodal Recommender System - Overview Lecture 253 Getting our Dataset from HuggingFace & showing Number of Rows Lecture 254 Saving Images Embeddings to Vector Database Lecture 255 Testing our MultiModal Recommender System - Fetching the Correct Images Lecture 256 Setting up the RAG Workflow Lecture 257 Putting it all Together and Testing the Multimodal Recommender RAG System Lecture 258 Adding a Streamlit UI to the Multimodal Recommender System Section 21: AI Agents & Agentic Workflows - Deep Dive Lecture 259 AI Agents Deep Dive - A Full Overview Lecture 260 Agents Characteristics and Use Cases Lecture 261 Download Source Code for AI Agents Section Lecture 262 Building our First AI Agent - Project Setup (OpenAI API) Lecture 263 Build our First AI Agent - Creating the Agent Class and Prompt Lecture 264 First AI Agent - Running our First Agent and Seeing the Results Lecture 265 Passing Complex Queries Through the Agent Lecture 266 First Agent - Using a Loop to Automate our Agent Lecture 267 Adding Interactive to Our Agent - Console App Lecture 268 Agent Introduction - Section Summary Lecture 269 LangGraph - Overview & Key Concepts Lecture 270 LangGraph - How It Helps Build AI Agents Lecture 271 LangGraph Core Concepts - Simple Flow Diagrapm Lecture 272 LangGraph - Data and State - Overview Lecture 273 Building a Simple Agent with LangChain Lecture 274 LangGraph Simple Bot - Streaming Values - Console App Lecture 275 Adding Tools to our Basic LangGraph Agent Lecture 276 Adding tools to the Agent - Part 1 Lecture 277 Adding Tools to the Agent - Using Built-in Tools - Part 2 Lecture 278 Adding Memory to Our Agent State Lecture 279 Adding Human-in-the-loop to the AI Agent Lecture 280 Building AI Agents with LangChain - Section Summary Lecture 281 Hands-on - Build a Financial Report Writer AI Agent Lecture 282 Agent State and Prompts Setup Lecture 283 Creating All Nodes - Functions Lecture 284 Adding Nodes and Edges and Running our Agent Lecture 285 Adding a GUI to the Agent with Streamlit Lecture 286 Optimization Techniques - Overview Lecture 287 Financial Report Writer AI Agent - Course Summary Section 22: Fine-tuning LLMs Lecture 288 Fine-tuning Introduction - Overview Lecture 289 Fine-tuning Techniques - Overview Lecture 290 Fine-tuning Comparison of Techniques Lecture 291 Fine-tuning General Process - Overview Lecture 292 Fine-tuning OpenAI Models Pricing Lecture 293 Tokens and the Tokenizer OpenAI Tool Lecture 294 HANDS-ON - Fine-tuning an OpenAI Model - Full Walkthrough Lecture 295 Crating a Chatbot with our Fine-tuned Model and Testing Section 23: Fine-Tuning Technique - LoRA Deep Dive Lecture 296 LoRA Introduction - Benefits Lecture 297 LoRA Deep Analysis Lecture 298 LoRA Implementation Strategy Workflow Lecture 299 Hands-on - Training Models - LoRA and PEFT Lecture 300 Running LoRA Model Fine-tuning and Testing Lecture 301 Creating an API Service to Interface with Our Fine-tuned Models Lecture 302 Testing our LoRA Model API Endpoint Lecture 303 Chatting with LoRA Fine-tuned Models Lecture 304 Full LoRA Workflow - Train and Chat with Fine-tuned Models Section 24: Wrap up and Next Steps Lecture 305 Wrap up and Next Steps Developers looking to implement AI-powered document search and retrieval.,Tech Entrepreneurs & Product Managers who want to build AI-driven applications.,Students & Researchers exploring the practical applications of LLMs and AI-driven automation. Homepage: Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live No Password - Links are Interchangeable |