![]() |
Whizlabs NVIDIA Fundamentals Of Machine Learning 2025 - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Whizlabs NVIDIA Fundamentals Of Machine Learning 2025 (/Thread-Whizlabs-NVIDIA-Fundamentals-Of-Machine-Learning-2025) |
Whizlabs NVIDIA Fundamentals Of Machine Learning 2025 - AD-TEAM - 03-08-2025 ![]() 1.16 GB | 00:04:45 | mp4 | 1920X1080 | 16:9 Genre:eLearning |Language:English
Files Included :
03-course introduction.mp4 (59.31 MB) 04-best practices to follow for exam success.mp4 (25.02 MB) 05-what is machine learning.mp4 (62.85 MB) 06-expectations from fundamentals of machine learning.mp4 (10.44 MB) 07-ai vs deep learning vs machine learning.mp4 (16.53 MB) 08-types of machine learning.mp4 (130.3 MB) 09-steps for machine learning.mp4 (32.92 MB) 10-data preprocessing essentials.mp4 (30.17 MB) 11-data preprocessing demo.mp4 (59.13 MB) 02-supervised machine learning classification.mp4 (38.31 MB) 03-supervised machine learning regression.mp4 (56.25 MB) 04-classification task demo.mp4 (59.88 MB) 05-model selection training and evaluation.mp4 (41.38 MB) 06-evaluating classification models.mp4 (26.27 MB) 07-confusion matrix.mp4 (21.17 MB) 08-evaluation metrics regression.mp4 (39.23 MB) 09-evaluation metrics demo.mp4 (52.26 MB) 02-unsupervised learning clustering.mp4 (32.38 MB) 03-understanding kmeans clustering.mp4 (25.95 MB) 04-clustering demo.mp4 (57.09 MB) 05-hierarchical clustering and density based clustering.mp4 (39.14 MB) 06-unsupervised learning association rule mining.mp4 (33.5 MB) 07-introduction to nvidia rapids.mp4 (23.5 MB) 08-accelerating the ml workflow on gpu demo.mp4 (42.01 MB) 09-cross validation techniques gridsearch randomizedsearch.mp4 (23.06 MB) 10-cross validation techniques demo.mp4 (69.91 MB) 11-arima model time series analysis.mp4 (25.64 MB) 12-arima model demo.mp4 (58.65 MB)] Screenshot ![]() ![]() ![]() |