![]() |
|
Applied Deep Learning And Neural NetWork Practical AI Mastery - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Applied Deep Learning And Neural NetWork Practical AI Mastery (/Thread-Applied-Deep-Learning-And-Neural-NetWork-Practical-AI-Mastery) |
Applied Deep Learning And Neural NetWork Practical AI Mastery - AD-TEAM - 04-14-2025 ![]() 6 GB | 11min 21s | mp4 | 1920X1080 | 16:9 Genre:eLearning |Language:English
Files Included :
1 - Introduction to Hands on Deeplearning.mp4 (8.76 MB) 10 - Universal Approximations Theorem.mp4 (71.87 MB) 11 - Deep Neural Network.mp4 (251.01 MB) 12 - Deep Neural Network Continue.mp4 (46.74 MB) 13 - Getting Started.mp4 (2.04 MB) 14 - Where to write Code.mp4 (29.66 MB) 15 - Jupiter Notebook.mp4 (59.86 MB) 16 - Google Colab.mp4 (109.45 MB) 17 - Pytorch.mp4 (25.77 MB) 18 - Tensors.mp4 (29.58 MB) 19 - Tensors Continue.mp4 (53.08 MB) 2 - What is Machine Learning.mp4 (23.61 MB) 20 - Gradients.mp4 (47.16 MB) 21 - MNIST Example.mp4 (146.49 MB) 22 - Check Sample.mp4 (47.29 MB) 23 - Hidden Layer.mp4 (88.21 MB) 24 - Interface on a Digit.mp4 (78.98 MB) 25 - TransferLearningOverview.mp4 (9.87 MB) 26 - What is Transfer Learning.mp4 (14.35 MB) 27 - CS231n Convolutional Neural Networks.mp4 (139.07 MB) 28 - Download Dataset.mp4 (37.4 MB) 29 - Transform the Data.mp4 (106.73 MB) 3 - Popular ML Methods.mp4 (33.87 MB) 30 - Visualize the Data.mp4 (98.04 MB) 31 - Define the Model.mp4 (137.58 MB) 32 - Add a Few Final Layers.mp4 (113.17 MB) 33 - Train the Model.mp4 (23.75 MB) 34 - Test the Model.mp4 (26.28 MB) 35 - What About CIFAR.mp4 (45.61 MB) 36 - Image Classifier on Cifar 10 Dataset.mp4 (26.91 MB) 37 - Download and Load Our Dataset.mp4 (84.42 MB) 38 - Train and Test Dataset.mp4 (138.76 MB) 39 - Define Our Neural Network.mp4 (64.45 MB) 4 - What is Deep Learning.mp4 (8.79 MB) 40 - Working on Image.mp4 (267.51 MB) 41 - Input and Output.mp4 (118.06 MB) 42 - Define Our Loss Function.mp4 (68.46 MB) 43 - Train Data in Enumerate.mp4 (82.02 MB) 44 - Train Data in Enumerate Continue.mp4 (47.34 MB) 45 - Test the Neural Network on the Test Image.mp4 (58.8 MB) 46 - Intro to Text Classifier.mp4 (17.48 MB) 47 - Text Classification Using CNN.mp4 (69.25 MB) 48 - Prepare the Data.mp4 (32.88 MB) 49 - Build the Model.mp4 (52.02 MB) 5 - Applications of Deeplearning.mp4 (21.52 MB) 50 - Build the Model Coninue.mp4 (82.42 MB) 51 - More on Build the Model.mp4 (60.59 MB) 52 - Define a Loss Function.mp4 (55.66 MB) 53 - Define a Loss Function Continue.mp4 (47.93 MB) 54 - More on Define a Loss Function.mp4 (58.5 MB) 55 - Evaluate or Test the Model.mp4 (62.05 MB) 56 - Intro to Text Generation.mp4 (59.98 MB) 57 - Text GenerationTransformers.mp4 (205.09 MB) 58 - Text GenerationTransformers Continue.mp4 (171.69 MB) 59 - TransformersArchitectures.mp4 (121.52 MB) 6 - Recommendations.mp4 (105.2 MB) 60 - TransformersArchitectures Cintinue.mp4 (162.37 MB) 61 - WordGeneration.mp4 (172.46 MB) 62 - WordGeneration Continue.mp4 (103.23 MB) 63 - TextGeneration.mp4 (64.41 MB) 64 - Intro to Text Translation.mp4 (12.88 MB) 65 - LoadingData.mp4 (92.74 MB) 66 - PreparingData.mp4 (43.93 MB) 67 - EncoderAttention Part 1.mp4 (116.41 MB) 68 - EncoderAttention Part 2.mp4 (47.23 MB) 69 - EncoderAttention Part 3.mp4 (41.55 MB) 7 - Basic Concept of Deeplearning.mp4 (1.1 MB) 70 - Decoder.mp4 (118.15 MB) 71 - TrainEvalFunctions.mp4 (96.45 MB) 72 - TrainEvalFunctions Continue.mp4 (50.44 MB) 73 - TrainingFixes.mp4 (57.06 MB) 74 - TrainingEvaluation.mp4 (119.14 MB) 75 - PredictionTabularData Part 1.mp4 (85.37 MB) 76 - PredictionTabularData Part 2.mp4 (91.31 MB) 77 - PredictionTabularData Part 3.mp4 (133.28 MB) 78 - PredictionTabularData Part 4.mp4 (98.39 MB) 79 - Collaborative Filtering.mp4 (104.72 MB) 8 - Perception.mp4 (67.23 MB) 80 - Collaborative Filtering Continue.mp4 (109.13 MB) 81 - Other Recommendation Approaches.mp4 (17.38 MB) 9 - Neural Network.mp4 (89.7 MB)] Screenshot ![]() |