![]() |
|
10 Days Prompt Engineering, Generative AI and Data Science - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: 10 Days Prompt Engineering, Generative AI and Data Science (/Thread-10-Days-Prompt-Engineering-Generative-AI-and-Data-Science) |
10 Days Prompt Engineering, Generative AI and Data Science - AD-TEAM - 04-22-2025 ![]() 8.21 GB | 14min 56s | mp4 | 1280X720 | 16:9 Genre:eLearning |Language:English
Files Included :
1 Introduction to 5 Projects in Prompt Engineering, Generative AI and Data Science.mp4 (13.27 MB) 3 About me, Diogo.mp4 (21.47 MB) 4 Unlimited Updates 2025.mp4 (27.04 MB) 6 Setting Up Google Colab.mp4 (47.53 MB) 7 Setting Up Jupyter Notebook.mp4 (137.98 MB) 8 Installing R and RStudio.mp4 (10.53 MB) 1 Game Plan for Basics of Prompt Engineering.mp4 (29.69 MB) 10 Scientific Research on Chain of Thoughts.mp4 (95.33 MB) 11 Key Learnings and Outcomes Prompt Engineering Basics.mp4 (34.22 MB) 2 Understanding Transformers.mp4 (61.22 MB) 3 Attention Mechanisms in NLP.mp4 (17.51 MB) 4 Prompt Engineering Techniques.mp4 (51.71 MB) 5 Setting Up the LM Studio.mp4 (90.52 MB) 6 LM Studio - Explicit Instructions and One-Shot.mp4 (193.44 MB) 7 LM Studio - Few-Shot.mp4 (148.18 MB) 8 LLMs are Few-Shot Learners.mp4 (43.54 MB) 9 LM Studio - Chain of Thoughts.mp4 (158.17 MB) 1 Game Plan for Prompt Engineering with System Message and LLM Parameters.mp4 (39.05 MB) 10 LM Studio - Breaking the System Message Part 2.mp4 (41.18 MB) 12 Understanding Generation Model Parameters.mp4 (16.42 MB) 13 LM Studio - Parameters.mp4 (102.5 MB) 14 Key Learnings and Outcomes System Message and LLM Parameters.mp4 (40.6 MB) 2 Tokenization.mp4 (66.51 MB) 3 OpenAI Tokenizer.mp4 (69.85 MB) 4 Rock-Paper-Scissors, Dices and Strawberries.mp4 (138.3 MB) 5 System Message.mp4 (59.29 MB) 6 LM Studio - System Message.mp4 (147.29 MB) 8 LM Studio - Breaking the System Message Part 1.mp4 (18.22 MB) 1 Game Plan for Reasoning and Hallucinations.mp4 (28.07 MB) 2 Meta Prompting.mp4 (154.43 MB) 3 Analogical Reasoning Prompting.mp4 (72.16 MB) 4 Rephrase and Respond.mp4 (82.72 MB) 5 According-to Prompting.mp4 (108.22 MB) 6 Multi-Persona Collaboration.mp4 (112.42 MB) 7 Emotion Prompting.mp4 (78.44 MB) 8 Key Learnings and Outcomes Reasoning and Hallucinations for LLMs.mp4 (85.53 MB) 1 Game Plan LLM Reasoning Models.mp4 (44.93 MB) 2 How LLM Reasoning Models work.mp4 (42.45 MB) 3 Prompting Reasoning Models (OpenAI Focus).mp4 (65.2 MB) 4 Overthinking - LLM Reasoning Prompt Injection.mp4 (47.8 MB) 5 Overthinking in Action.mp4 (71.85 MB) 6 LLMs can't Reason - Apple Research Paper.mp4 (77.18 MB) 1 Game Plan for OpenAI API.mp4 (37.81 MB) 2 OpenAI API for Text.mp4 (23.84 MB) 3 Python - Setting Up OpenAI API Key.mp4 (57.17 MB) 4 Python - OpenAI API Setup.mp4 (91.51 MB) 5 Python - Generating Text with OpenAI API.mp4 (84.62 MB) 6 Python - OpenAI API Parameters.mp4 (94.35 MB) 7 Python - OpenAI API with Few-Shot.mp4 (115.06 MB) 8 Key Learning and Outcomes OpenAI API for Text.mp4 (35.27 MB) 1 Project Introduction Can GPT play rock paper scissors.mp4 (48.1 MB) 2 Python - OpenAI API Setup.mp4 (38.73 MB) 3 Python - Random Playing Strategy.mp4 (61.05 MB) 4 Python - Iteratively Improving the System Prompt.mp4 (73.78 MB) 5 Python - Testing Temperature Parameters.mp4 (57.42 MB) 6 Python - New Strategy Change if Defeat.mp4 (67.72 MB) 7 Python - Building Functions to Play Game.mp4 (159.26 MB) 8 Python - New Strategy The Analyst.mp4 (74.52 MB) 9 Python - Testing Strategies.mp4 (77.91 MB) 1 Game Plan for OpenAI API for Images.mp4 (67.75 MB) 2 Python - OpenAI API Setup.mp4 (87.51 MB) 3 Python - Analyzing images from Links.mp4 (128.01 MB) 4 Python - Encoding Images.mp4 (44.81 MB) 5 Python - Analyzing Images from base64.mp4 (56.74 MB) 6 Python - Adding Google Searches.mp4 (160.68 MB) 1 Game Plan for Random Forest.mp4 (27.12 MB) 10 Evaluation metrics for Classication Problems Part 2.mp4 (30.41 MB) 11 Python - Assessing Classification Model.mp4 (51.22 MB) 12 Python - Parameter Tuning.mp4 (64.63 MB) 13 Python - Parameter Tuning.mp4 (53.38 MB) 14 Python - Best Random Forest Model.mp4 (41.46 MB) 15 Python - Feature Importance.mp4 (55.93 MB) 16 Python - Charting a Great Plot Part 1.mp4 (91.5 MB) 17 Python - Charting a Great Plot Part 2.mp4 (42.32 MB) 18 Python - Charting a Great Plot Part 3.mp4 (96.14 MB) 19 Key Learnings and Outcomes Random Forest.mp4 (21.53 MB) 2 Random Forest and Ensemble Learning.mp4 (54.47 MB) 3 How Decision Trees Work.mp4 (15.82 MB) 4 Python - Setup.mp4 (57.87 MB) 5 Python - Data Processing.mp4 (69.53 MB) 6 Python - Correlation Heatmap.mp4 (116.42 MB) 7 Python - Training and Test Set.mp4 (69.16 MB) 8 Python - Random Forest.mp4 (21.2 MB) 9 Evaluation metrics for Classication Problems Part 1.mp4 (59.32 MB) 10 SHAP Values.mp4 (6.18 MB) 11 Python - XGBoost Setup.mp4 (130.6 MB) 12 Python - Data Processing.mp4 (98.73 MB) 13 Python - First XGBoost Model.mp4 (137.2 MB) 14 Python - Evaluating XGBoost Model.mp4 (186.28 MB) 15 Python - Evaluating XGBoost Model part 2.mp4 (90.16 MB) 16 Python - Building Functions for Binary Model Assessment.mp4 (39.23 MB) 17 Python - Data Processing Part 2.mp4 (82.05 MB) 18 Python - Second XGBoost Model.mp4 (52.06 MB) 19 Random Parameter Tuning.mp4 (16.19 MB) 2 Problem Statement.mp4 (28.69 MB) 20 Python - Parameter Tuning.mp4 (158.6 MB) 21 Python - Final XGBoost Model.mp4 (136.35 MB) 22 Python - SHAP Importance and Summary Plot.mp4 (67.77 MB) 23 Python - SHAP Dependence and Force Plots.mp4 (90.46 MB) 24 Python - SHAP Waterfall and Cohort Deep Dives.mp4 (74.22 MB) 25 R - Loading and inspecting data.mp4 (31.26 MB) 26 R - Isolating numerical variables.mp4 (18.85 MB) 27 R - Summary Statistics and Correlation Matrix.mp4 (17.95 MB) 28 R - Preparing first dataset.mp4 (8.33 MB) 29 R - Training and test set.mp4 (18.6 MB) 3 Introducing XGBoost.mp4 (10.47 MB) 30 R - Isolating X and Y variables.mp4 (34.82 MB) 31 R - Setting XGBoost Parameters.mp4 (31.93 MB) 32 R - Parallel Processing.mp4 (7.42 MB) 33 R - Running XGBoost.mp4 (18.98 MB) 34 R - Predicting with XGBoost.mp4 (16.66 MB) 35 R - Confusion Matrix.mp4 (22.18 MB) 36 R - Transforming factors into numerical variables.mp4 (18.88 MB) 37 R - Preparing final dataset.mp4 (14.61 MB) 38 R - Second XGBoost model.mp4 (12.02 MB) 39 R - Predictions and Confusion Matrix part 2.mp4 (7.29 MB) 4 How XGBoost works.mp4 (10.65 MB) 40 R - Start Parallel Processing.mp4 (10 MB) 41 R - Cross Validation inputs.mp4 (11.12 MB) 42 R - Cross Validation Parameters.mp4 (10.98 MB) 43 R - Parameters to tune.mp4 (39.48 MB) 44 R - Parameter Tuning round 1.mp4 (61.18 MB) 45 R - Parameter Tuning round 2.mp4 (57 MB) 46 R - Final XGBoost model.mp4 (19.2 MB) 47 R - Business Perspective.mp4 (58.37 MB) 48 R - Importance Drivers and SHAP Values.mp4 (36.67 MB) 5 XGBoost quirks.mp4 (3.48 MB) 6 Dummy variable trap.mp4 (6.43 MB) 7 Root Square Mean Error.mp4 (3.97 MB) 8 Variance vs Bias trade off.mp4 (6.09 MB) 9 Parameter tuning and Cross Validation.mp4 (7.81 MB) 1 Game Plan for CrewAI.mp4 (60.58 MB) 2 CrewAI.mp4 (35.11 MB) 3 Python - CrewAI Setup.mp4 (113.68 MB) 4 Python - First AI Agent.mp4 (84.24 MB) 5 Python - Task and AI Crew.mp4 (111.24 MB) 6 Python - Second AI Agent and Task.mp4 (72.32 MB) 7 Python - Third AI Agent.mp4 (129.86 MB)] Screenshot ![]() |