![]() |
|
Introduction to LLMs Transformer Attention Deepseek pytorch - Printable Version +- Softwarez.Info - Software's World! (https://softwarez.info) +-- Forum: Library Zone (https://softwarez.info/Forum-Library-Zone) +--- Forum: Video Tutorials (https://softwarez.info/Forum-Video-Tutorials) +--- Thread: Introduction to LLMs Transformer Attention Deepseek pytorch (/Thread-Introduction-to-LLMs-Transformer-Attention-Deepseek-pytorch) |
Introduction to LLMs Transformer Attention Deepseek pytorch - AD-TEAM - 05-26-2025 ![]() 1.28 GB | 8min 57s | mp4 | 1920X1080 | 16:9 Genre:eLearning |Language:English
Files Included :
1 - Introduction to Course.mp4 (42.46 MB) 24 - Attention Math Intro.mp4 (4.52 MB) 25 - Attention QueryKeyValue example.mp4 (14.14 MB) 26 - Attention QKV transformer.mp4 (14.14 MB) 27 - Encoded value.mp4 (12.15 MB) 28 - Attention formulae.mp4 (11.26 MB) 29 - Calculate QK transpose.mp4 (26.36 MB) 30 - Attention softmax.mp4 (10.21 MB) 31 - Why multiply by V in attention.mp4 (13.76 MB) 32 - Attention code overview.mp4 (37.96 MB) 33 - Attention code.mp4 (97.14 MB) 34 - Attention code Part2.mp4 (66.49 MB) 35 - Mask self attention.mp4 (24.92 MB) 36 - Mask Self Attention code overview.mp4 (17.68 MB) 37 - Mask Self Attention code.mp4 (28.6 MB) 38 - Encoder decoder transformer.mp4 (25.71 MB) 39 - Types of Transformer.mp4 (10.19 MB) 40 - Multimodal attention.mp4 (14.41 MB) 41 - MultiHead Attention.mp4 (21.86 MB) 42 - MultiHead Attention Code Part1.mp4 (12.28 MB) 43 - Multihead attention code overview.mp4 (12.29 MB) 44 - Multihead attention encoder decoder attention code.mp4 (60.45 MB) 45 - Deepseek R1 training.mp4 (12.98 MB) 46 - Deepseek R1zero.mp4 (23.23 MB) 47 - Deepseek R1 Architecture.mp4 (100.64 MB) 49 - Deepseek R1 paper Intro.mp4 (54.46 MB) 50 - Deepseek R1 Paper Aha moments.mp4 (28.45 MB) 51 - Deepseek R1 Paper Aha moments Part 2.mp4 (23.7 MB) 52 - Deepseek R1 summary.mp4 (8.94 MB) 2 - AI History.mp4 (9.11 MB) 3 - Language as bag of Words.mp4 (12.64 MB) 4 - Word embedding.mp4 (11.63 MB) 5 - Vector Embedding.mp4 (6.56 MB) 6 - Types of Embedding.mp4 (8.84 MB) 7 - Encoding Decoding context.mp4 (16.82 MB) 8 - Attention Encoder Decoder context.mp4 (10.07 MB) 10 - GPT vs Bert Model.mp4 (7.9 MB) 11 - Context length and number of Parameter.mp4 (14.41 MB) 9 - Transformer Architecture with Attention.mp4 (22.55 MB) 12 - Tokenization.mp4 (17.04 MB) 13 - Code Tokenization.mp4 (67.33 MB) 14 - Transformer architecture.mp4 (26.47 MB) 15 - Transformer block.mp4 (24.67 MB) 16 - Decoder Transformer setup and code.mp4 (39.45 MB) 18 - Transformer model code architecture.mp4 (119.2 MB) 19 - Transforme model summary.mp4 (5.81 MB) 20 - Transformer code generate token.mp4 (37.83 MB) 21 - Transformer attention.mp4 (5.79 MB) 22 - Word embedding.mp4 (8.16 MB) 23 - Positional encoding.mp4 (10.66 MB)] Screenshot ![]()
RapidGator
NitroFlare |