05-13-2024, 03:07 AM
![[Image: c859533ad7abd21b3087d88327d6fb58.jpg]](https://i123.fastpic.org/big/2024/0513/58/c859533ad7abd21b3087d88327d6fb58.jpg)
Published 5/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 1.23 GB | Duration: 4h 12m
Learn Complete Data Science & Machine Learning Course
What you'll learn
Master the essential concepts, techniques, and tools of data science and machine learning.
Acquire hands-on experience with Python programming and its libraries for data manipulation, analysis, and visualization.
Build and evaluate predictive models using a variety of machine learning algorithms and techniques.
Complete Data Science & Machine Learning Course
Requirements
python installed
Description
Course Title: Complete Data Science and Machine Learning CourseCourse Description:Welcome to the "Complete Data Science and Machine Learning Course"! In this comprehensive course, you will embark on a journey to master the fundamentals of data science and machine learning, from data preprocessing and exploratory data analysis to building predictive models and deploying them into production. Whether you're a beginner or an experienced professional, this course will provide you with the knowledge and skills needed to succeed in the dynamic field of data science and machine learning.Class Overview:Introduction to Data Science and Machine Learning:Understand the principles and concepts of data science and machine learning.Explore real-world applications and use cases of data science across various industries.Python Fundamentals for Data Science:Learn the basics of Python programming language and its libraries for data science, including NumPy, Pandas, and Matplotlib.Master data manipulation, analysis, and visualization techniques using Python.Data Preprocessing and Cleaning:Understand the importance of data preprocessing and cleaning in the data science workflow.Learn techniques for handling missing data, outliers, and inconsistencies in datasets.Exploratory Data Analysis (EDA)
![Tongue Tongue](https://softwarez.info/images/smilies/tongue.png)
![Big Grin Big Grin](https://softwarez.info/images/smilies/biggrin.png)
![Big Grin Big Grin](https://softwarez.info/images/smilies/biggrin.png)
Overview
Section 1: Introduction To Complete Data Science & Machine Learning Course
Lecture 1 Introduction To Course
Section 2: Complete Python Programming Course
Lecture 2 Python Complete Course Introduction
Lecture 3 Python Class 1 : Introduction To Python
Lecture 4 Python Class 2 : Setting Python Environment
Lecture 5 Python Class 3 : Introduction To Variables
Lecture 6 Python Class 4 : Introduction To Keywords
Lecture 7 Python Class 5 : Introduction To Datatypes
Lecture 8 Python Class 6 : ID Function
Lecture 9 Python Class 7 : Arithmetic Operator
Lecture 10 Python Class 8 : Logical Operator
Lecture 11 Python Class 9 : Comparison Operator
Lecture 12 Python Class 10 : Bitwise Operator
Lecture 13 Python Class 11 : Membership Operator
Lecture 14 Python Class 12 : Identity Operator
Lecture 15 Python Class 13 : Conditional Statements
Lecture 16 Python Class 14 : For Loop and Range Function
Lecture 17 Python Class 15 : While Loops
Lecture 18 Python Class 16 : Break and Continue
Lecture 19 Python Class 17 : Function
Lecture 20 Python Class 18 : Try Except Finally Blocks
Lecture 21 Python Class 19 : String and Functions
Lecture 22 Python Class 20 : List and Functions
Lecture 23 Python Class 21 : Tuple and Functions
Lecture 24 Python Class 22 : Dictionary and Functions
Lecture 25 Python Class 23 : Class and Object
Lecture 26 Python Class 24 : Class Methods
Lecture 27 Python Class 25 : Inheritance and its types
Lecture 28 Python Class 26 : Polymorphism and its types
Lecture 29 Python Class 27 : Encapsulation and Access Modifiers
Lecture 30 Python Class 28 : Abstraction
Lecture 31 Python Class 29 : Mini Project
Section 3: Complete Data Science Course
Lecture 32 Complete Data Science Course
Lecture 33 Numpy Complete Course
Lecture 34 Numpy Class 1 : Import and Install
Lecture 35 Numpy Class 2 : Array and its Types
Lecture 36 Numpy Class 3 : Datatypes
Lecture 37 Numpy Class 4 : NDIM Function
Lecture 38 Numpy Class 5 : ARANGE Function
Lecture 39 Numpy Class 6 : CONCATENATE Function
Lecture 40 Numpy Class 7 : NDMIN Function
Lecture 41 Numpy Class 8 : NDITER Function
Lecture 42 Numpy Class 9 : All Functions
Lecture 43 Pandas Class 1 : Import Dataset
Lecture 44 Pandas Class 2 : Head & Tail Function
Lecture 45 Pandas Class 3 : Info Function
Lecture 46 Pandas Class 4 : Drop na Function
Lecture 47 Pandas Class 5 : Fill na Function
Lecture 48 Pandas Class 6 : Drop Duplicates Function
Lecture 49 Pandas Class 7 : Replace Values Function
Lecture 50 Matplotlib Class 1 : Import Dataset
Lecture 51 Matplotlib Class 2 : Show Function
Lecture 52 Matplotlib Class 3 : Marker Function
Lecture 53 Matplotlib Class 4 : Xlabel Ylabel Function
Lecture 54 Matplotlib Class 5 : Title Function
Lecture 55 Matplotlib Class 6 : Linestyle Linewidth Function
Lecture 56 Matplotlib Class 7 : Barplot
Section 4: Complete Machine Learning Course
Lecture 57 Complete Machine Learning Introduction
Lecture 58 Machine Learning Class 1 : Linear Regression
Lecture 59 Machine Learning Class 2 : Logistics Regression
Lecture 60 Machine Learning Class 3 : Support Vector Machine
Lecture 61 Machine Learning Class 4 : KNN
Lecture 62 Machine Learning Class 5 : K Means Clustering
Lecture 63 Machine Learning Class 6 : Naive Bayes
Lecture 64 Machine Learning Class 7 : Decision Tree Classifier
Lecture 65 Machine Learning Class 8 : Random Forest
Students and professionals interested in pursuing a career in data science, machine learning, or artificial intelligence.,Professionals seeking to enhance their skills and stay competitive in the rapidly evolving field of data science and machine learning.
Homepage
![[Image: signature.png]](https://softwarez.info/images/avsg/signature.png)